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1. INTRODUCTION

If nothing is known about the function x(¢) but its values at a finite number
1
of points and a bound for f o |x*)(2)|2dt (for some positive r), then its 2r-spline

interpolant Sx(¢) is the best approximant (estimant). “Best” means that for
any linear functional u(x), for example u(x) = x(7), the value u(Sx) is the
median of all values u(x) consistent with the given data. The optimality of
spline interpolation in this sense follows directly from the general theory of
optimal approximation and estimation as established in [/, 2]. Many other
aspects of approximation by spline interpolants have been studied (for
references see [3], [7] and [8]).

In this paper we consider periodic functions x(¢) and » interpolation points
equally spaced in an interval of periodicity. Sx is said to be a 2r-spline inter-
polant of x if Sx is periodic, has a continuous derivative of order 2r — 2, is an
algebraic polynomial of degree < 2r — 1 between knots 7, (the interpolation
points), and Sx(#,) = x(z,). The usual cubic splines appear as 4-splines in this
notation. We establish explicit formulas for Sx and for #(Sx), where the
functional u represents interpolation, differentiation, quadrature, or a Fourier
coefficient. No matrix inversion is needed to compute Sx or u(Sx) if use is
made of certain numerical coefficients (depending on r and n), whose explicit
form is given [Sec. 2-4], and which can readily be computed. Especially
noteworthy is the simple approximate value for the Fourier coefficient

1 . . . . -
oy = JO x(t)e *"# gt of the function, determined from the spline interpolant:

n—-1 «©
a,® (Li/n) .Zo x(v[n)e 2k, Lt = l 2 (L—Infky™

==
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(Section 4). It differs from the simplest approximation only by the factor .
We also find optimal error bounds, asymptotic expressions for the error as
the number of interpolation points becomes large, and convergence properties
of the spline interpolants Sx and their derivatives [Sec. 6-11].

Basic for our analysis of approximation by periodic spline functions turn out
to be the interpolants b,(z) of the functions exp(2wivt) (v=0,1,2,...,n—1)
Section 5). The piecewise polynomial functions b,(¢) with knots at m/n (m =0,
+1,42,...) inherit many of the properties of the functions exp (2mivt) that they
interpolate. In particular,

bt + 1/n) = " (1),

[bu(t)| < 1, etc. Explicit formulas in terms of the Bernoulli functions B,,(¢)
(the periodic extension of the Bernoulli polynomial restricted to 0 << 1)
and the Fourier series for the b,(t) are given, and it is shown that they and
their derivatives of order <2r — 1 are orthogonal in the same sense as the
functions exp(2wivt) (see Section 5). If x(¢) has the absolutely convergent
Fourier expansion Y, a,exp (2wivt), then its 2r-spline interpolant on a mesh of
n equidistant points is Sx(#) = S,"x(¢) = 3 «bu(t) (Section 7). Making use of
these representations, we find that the remainder x(¢) — S,"x(¢) is, in the class
of functions x restricted by X |v|? o] < o for some p, 0 < p < 2r, of order
0(»~?) uniformly in ¢, and the sth derivative of this remainder is, for 0 < s < p,
of order 0(n~?*){(o(1) if s=p), (Theorem 7.1). If p=2r, s<2r—1 and
x9(t) — (5" x)¢Xt) = o(n~?*s), then x(¢) is constant. As a by-product of this
error analysis appears a formula for computing the derivative x©” as the
limit of a remainder. Indeed

x2(0) = 8, lim n>[x(1/2n) — S, x(1/2n)],
where 0, is a simple numerical factor (Equation 7.23). The root mean-square

error { [ X6 t) — (S,"x)5)(r)|?dt} /2 is, in the class of functions x restricted b
o y

> |v]# |aw]? < 0 for some p, 3 <p < 2r, of order O(n?**) for s < p (Theorem
8.1). If p =2r and

{ Jo‘ XO() — (S )O(0)|2dt} 2 = o(n2r*) for some 5,0 < s < 2r — 1,

then x(z) is constant. If p =r, that is, if we deal with the class of functions
1

with an upper bound on J; |x®(2) |2 dt given, then S,"x(¢) is the best estimation

of x(¢) [see introductory remark], and

fol [xP@) = (S x)P()|2Pdt =0(1) asn—>

(Theorem 8.2). From the order of convergence of the spline approximations
S"x to x one can infer smoothness properties of the function. Thus, if
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{{0‘ |x(t)—S,"x(t)lzdt}"'l:O(n“‘) for some g1, then 3 [v|*®|ow|? <

for the largest integer p smaller than g (Theorem 8.3).

Uniform approximation in the class of functions x restricted by
> [v]*? |aw]? < oo is slightly less accurate than mean-square approximation.
In this case,

|x(s)(t) _ (Srn x)(s)(t)l — 0(71»p+s+1i2) for s <p-— %

(Theorem 9.1). That this is the precise order of error is also proved. This is
done in connection with the problem to determine, for the functionals u
mentioned above, the maximum deviation of u(x) from its median value
u(S,"x) in the class of periodic functions x with x(0), x(1/n), ..., x(1 — 1/n), and
a bound on Jol [x®(£)|?dr given. For example, it is proved that liman" =32
sup |x'(0)|, where the supremum is taken over the class of periodic functions x
with x(0) = x(1/n)=...=x(1 — 1/n) =0 and fol |x®(2)|*dt < 1, exists and is
positive, and its value is determined (Theorem 11.2). Similar results are

derived for the interpolation, quadrature, and Fourier coefficient functionals
(Section 11).

2. THE CARDINAL INTERPOLANTS

Let &, &15 ..., £,y be n > 1 given (real or complex) numbers. We wish to
construct the 2r-spline (r a fixed positive integer) s(¢) = 5,"(t) = s5,"(¢;£) of
period 1 with knots [discontinuities of the (2r — 1)st derivative] at the points
0, =1/n, +2/n, ..., which takes on the value &, at the point v/n, v=0, I, ...,
n — 1. Thus we require

() se¥,_,
Gi) s¢¢+ D=s@), —c<t<=
(ili) s7(r)=0, t#0,=1/n, +2/n,...
@iv) swim)=¢€,, v=0,1,..,n- 1. 2.1

The existence and uniqueness of the function s satisfying conditions (2.1)
follows from the fact that the problem of minimizing the integral

ﬁ)‘ X ()2 dt 2.2)

among the functions x € €,_, of period 1 for which x(v/n)=§,,v=0, 1, ...,
n — 1, has exactly one solution, x = s (see [/]).
We expand s(¢) first with respect to the basis formed by the functions

LB, (t—vin) v=0,1,..,n—1. (2.3)
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Here B,,(¢) is the Bernouili function of period 1 which is the periodic extension
of the Bernoulli polynomial B,,(¢) restricted to the interval 0 < ¢ < 1. Thus,

(see [4])

2r

B=B, =5 ()B,i*>  0<t<1
p=0 7 (2.4)
B, (t+ 1) = B,(1) —x < f< 0,

where B, is the pth Bernoulli number, B, = B,(0) [in particular, B,,,, =0 for
p=1,2,...]. Since B,(t) =(—1)*B,(1 —t) and B,, (1) =(p + 1) B,(t) (p=0,
1,2,...), it follows that B,, is an even function in €,,_,, B *Y(t) =0 for
t#0,41,42,...,and

BED0+) — BE=(0-) = —(2r). (2.5)
We also mention the useful identity (see [4])
n—1
B, (nt)=n*"1"3 B,.(t—v|n). (2.6)
V=0

These properties of B,, are evident from the Fourier expansion (see [4]),
which might serve for the definition of B,,:

Bo(t) = (—=1)y-12r)! 5 z cos 2wkt
k=1

(277)21' k2r
.7
_ (___l)r—l(zr)! Z, e21'rlkt
- (2ﬂ,)2r k2 -
Here and in the following ¥,," stands for lim, ,,(Z;.,, .. 1 Dkt =D

The following expression of B,,(¢) in powers of #(1 — t) is well suited for
computation (see [4])

By(t) = (1) ZOBr,p[l(l -0 (2.8)
P
The coefficients involved are obtained recursively from
Br, 0= (—"l)r BZr
pp+1)B, 1 =2p2p—1)B, ,—202p—1)B,_,, ;- 2.9)

Particular valuesare B, =1, B, ; =0forr>1,B, ,=1.
To obtain the spline function s(¢) defined by conditions (2.1) we set

n—1
s@=n+ > 9, B(t—vn) (2.10)
v=0
where the coefficients 7, 7, ..., 1,_; are determined so that
n—1
S 7,=0 @.11)
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and
s(vin) = €, v=0,1,....n—1. (2.12)

Condition (2.11) implies s2(¢) = (2r)! 3 9, =0 for 1 # 0, +1, =2, .... Thus
if (2.11) and (2.12) are satisfied, then s is the desired spline interpolant.

If we substitute ¢ = pjn in (2.10), sum over p =0, 1. ..., n — 1 and use (2.6)
[with = 0], we obtain on account of (2.11) and (2.12)

n—1

%

n—1
§u=n+n'""" By > m, =
n=0 v=0

thus
n—1
n={(1/n) > . (2.13)
n=0

The interpolation conditions (2.12) now give

1

Oy M =& —7 v=0,1,...,n—1 (2.14)

n

1

p=0

where we have set o,, = 0" .

om=Bymin)  m=0,+1,42,.... (2.15)

The matrix of the linear system (2.14) is a circulant, its #* elements are replica
of gy, Gy, ..., Oy SINCE Oy = Oy Oy = 0 (M =0.1,2,...). These numbers
can be calculated by the use of (2.8),

of ==Y Zo B, ,m"(n — m)?;n?*. (2.16)
o

The calculations can be reduced by making use of the obvious relation
okt = o" k=1,2.....

r, kv ry

The inverse of the matrix {o,_,} is also a circulant, which we denote as {p,_,}.
Again we have p,, = p_m, Pm-n = Pm» 50 that the n? elements of {p,_,} are replica
of pg, p1s - - +» Pus2. To calculate these numbers, we first observe that the n-vectors

{1,¢7, €2,..., "DV ¢ = e2in v=0,1,...,n-—1 (2.17)

are eigenvectors of the matrix {o,_,}, and the corresponding eigenvalues are
(for simplicity we assume # is even)

n—1
Av = Z Om el'l'w
m=0
=0 + 2[o,co82nmvin + o, cosdmvin + ...

+ Gjp—y €08 21(nf2 — V) vn] + (=1) 6, 5. (2.18)
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Clearly A, = A,_,. Using Fourier series (2.7), we find the following expression
for A,:

N = (1Y@t e i; (k — vjn)2r 2.19)

(for v = 0 the term with £ = 0 is to be omitted in the sum). Observing that the
vectors (2.17) satisfy the orthogonality relations

n—1
ZO e er™ = nd
e

we find for the p, the explicit expression

M, V2

n—1
np,= > Ag'er
m=0
=A' -+ 2[AT cos 2mvin + A3t cosdmvin + . ..
+ Aghoycos 2m(n/2 — 1) vin] + (1) A%, (2.20)
As with the ¢’s the calculation of the p’s is simplified by making use of the

relations
Xem =k kL =kl k=1,2,.... (2.20a)

With the numbers p found, we have the explicit inversion of system (2.14)

n—1
M= Zopv—,u(fy'—n) V=0,1,...,n—l,
”:

Since by (2.6), (2.15), (2.18), (2.20)
n—-1 a—1
Z P = 1 z g,
r=0 v=0
=X' =n""1By), (2.21)
we have more explicitly
n—1 n—-1
M= Z Pr—y 5;1 —n¥! ”I/Bzr, n= (1/’1) Z fp' (222)
#=0 7n=0

This completes the calculation of the interpolating spline s.
If we let s,=sF, (v=0,1,...,n— 1) be the cardinal interpolating spline
satisfying
s,(uiny=29,,, wv=0,1..,n—1 (2.23)

in place of (2.1(iv)), then by (2.22) the corresponding coefficients are
Ny = Pu—p — N '/ By,, n=n""; hence

SE) = U+ S, (po = 171 Be) Bt = i)

= (Um0 = Bal)/Bal + 3 pooBokt—pld. (2.249)
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As one would expect, the s. can be expressed as translates of the one even
function s,:

5,(1) = s5q(t — v'n) v=0,1,....n—1

n—1
SO(’) - l.",” + z (Pu - ’lzr_z,/BZr) ézr(f - Vr"”)
V=0

n—1
= (Un) [1 — Baont)| By} + 3, p, Byt + vin). (2.25)
V=0

3. INTERPOLATION, DIFFERENTIATION, QUADRATURE

a. If x(¢) is the function to be interpolated, with & = x(v/n) given (v =0,
1,...,n — 1), the spline interpolation of x(¢) at ¢t = 7 is denoted by Sx(7), and
is given by

Sx(7) = g x(v]n) so(r — vin) G.1)

where s, is given in (2.25). S = S," is to be considered a linear operator, trans-
forming general periodic functions into periodic 2r-splines.
b. The spline derivative of x(¢) at ¢ = 7 is given by

DSx(r) = (Sx)(7) = 5. x(vj) s5'(r — vn), (.2)

v=0

where s, is obtained from (2.25):

n—1
so'(t)=2r VZO (p, — ¥ 72| By) By, (£ + vin)

=2r [_BZr—l(nt)/BZr + :é::) Py é2r—[(t + V/ln)] - (33)

If 7 is one of the interpolation points, say = = 0, then (3.2) gives the following
approximation to x'(0):

n—1 n—1
(Sxy(0)= 20 8, x(v/n), 8,=2r ZOPW By, \(u/n). (3.4)
V= =

c. The spline quadrature value of |_TT x(t)dt is given by

r
J=

[ Sx(t)di="S x(vin) [ so(t— vind (3.5)
J R

where

T n—1
J so(t — vinydt =27[n + Qr = 1)7" 3 (p,_, —n*?
T p=0

[By) [Bars (T + pfm) + BZP—I(T —p/n)l.  (3.6)
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For the special case + = 1/n we obtain the quadrature formula

[ U stydt="3 x, x(v/n),

-1/n ve0

n-1
), =2n"2+Q2r+ 1! PZO (Porp=1 = Pvtu+1) Baris(p/n). 3.7

4, FOURIER COEFFICIENTS

The spline approximation of the Fourier coefficient fol x(t)exp(—2mikt)dt
(k=0,+1,+2,...)is

n—1
fl Sx(t)e 2" dt = > x(v[n) f' So(t — vn)e 27kt gy
0 o o

n—1"
=S e x(vin) [ solt)e 2 dt. @.1)
v=0 Y
We put
fo‘ So(t) e"2mike it — jo' so(t) €2t dt = jo' sot)cos2mkeds  (4.2)

=5(k) k=0,1,2,...
and proceed to determine these coefficients. By (2.7), for k # 0
J-ol Byt +vimye 2 d = € J‘ol By () e~ 2™k gt
= (__1)»-—1(2'.)! Qnk) ™ e:v;

hence by (2.25)
-1
So(k) = (=D~ 1@2r) 2mk) =2 nZo (p, —n*2By) €. 4.3)
By the definition of py, A and e, we have
n—1
Sper=Xx" k=0,12,... 4.4
v=0

n-1
>e=n ifk=0(modn)
v=0

=0  ifk#0(modn) (4.5)

where we have set A, = A, (k=0,1,2,...). Since n*~1/B,, = A" [see (2.21)],
(4.2), (4.3) and (4.4) give

Sok) = (1 12r) k)~ AL k # 0(modn)
=0 k=0(modn), k#0 (4.6)
=n! k=0.

These are the Fourier coefficients of s,.
3
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If (4.6) is used in (4.1), one obtains the following explicit formulas for the
spline approximation of the Fourier coeflicients of the function x(z):

fol Sx(t) e=27% dt = (1/n) jol x(v/n) k=0
~0 k =0(modn), k #0 @.7
= (1 1Q2r) Qak) 2 X i:) x(wln)*, k% 0(mod n).

If we use the expression (2.19) for A, in (4.7), we obtain the following simple
formula for the Fourier coefficients:

n—1 ©
fo‘ Sx(tye ™ tdt = (1/n) 3 x(vimyes®™ | > (1 —Injk)y™*, k#0(modn).
r=0 4

- 4.8)
It is interesting to observe that the commonly used approximation

(1in)'S, 56l &+

(which results from the trapezoidal rule) turns out to be a biased estimate in
the class of functions x with a known bound on {01 |x")(#)]?dt, the bias factor
3. (1 — Infk) being the larger, if |k| <n/2, the smaller r is. From (4.7) it
also follows that if k, = k, # 0 (mod#), then

(0‘ Sx(rye s dr + [ Sx(t)e et dr = kY + . (4.9)
The trapezoidal rule gives the same value for the k;th and k,th Fourier
coefficients, which is clearly useless. The rate of decrease expressed in (4.9) is
the expected one for the class of functions x with a bound on J; [xX(2)|2dr.

In {10], Collatz and Quade obtain the same result for the Fourier coefficients,
but with a different expression for the bias factor.

5. THE EXPONENTIAL INTERPOLANTS

We now introduce the important functions b, =57, (v=0,x1,22,...)
defined as
b(t)=1 v=0(modn)

B =N S e Byt —min) 6.1

m=0

n—1 _ n—1
= ZO e B, (t — mjn) Zo e By, (min) v # 0(mod n).
m= m=
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Clearly, b, ., = by and b_, = b,. The b, are 2r-splines since
n—1 3
> em=0 ify#0(modn).
m=0

They have the fundamental property

b(t+1/n)=¢"b(t)=e"mb,(t) v=0,+1,42,.... (5.2
Since 5,(0) = 1, it follows from (5.2) that
b,(m[n) = &™ = g¥ivmin v=0,1,...,n—1. (5.3)

Thus b,(z) is the 2r-spline interpolant of the function exp(2=ivt) [and also of
exp[2ni(v + kn)t], k=0,£1,42,...], and Reby (), Imb.,(?) interpolate
cos 2mvt, sin2mvt, respectively. Therefore, also,

n—-1
b(t)= > emsy(t—mn) v=0,£1,42,.... (5.4)
m=0
Conversely, s, may be expressed in terms of by, ..., b,_;. By (5.4)

) =(U)'S by). )

Hence the spline interpolant Sx may be expressed in terms of the b,. By (5.2)
and (5.5)
n—1
So(t — m{n) = (1/n) VZO & "b(t)
and this together with (3.1) gives

$X(0) =3, 8,60

E=(n)S P&, = (Uin)S & x(uln). 5.6)
n=0 p=0

Formula (5.6) shows that x(¢) has the same spline interpolant as the trigono-
metric polynomial

S hem, B=(Un) S G x(ui) 57)

=

[independent of r]. (5.7) is clearly an interpolating polynomial of x(¢).
The Fourier expansion of b, is easily obtained from (2.7), using (2.19):

by - CU IO ST ]

(277.)2r )\,, | m=o k2r
_ (—-—1)'—1(21‘)! eZni(v—kn)t
- (27r)2' )\,, 4 - kn)z" (5-8)

= g (k — v[n)™2r g2mitv—hme / S (k—v[n)"?, v#0(modhn).
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We also record the Fourier expansion of the derivatives b, s =1,2,...,2r—1:

b;(;sz(t) — (__27”'”)5 z (k . V/n)—2r+s eZni(v—kn)t/Z (k —_ V/n)—Zr
k k
v#0(modn); s=0,1,...,2r - 1. (5.9)

The spline functions b,(t) (v=0,1,...,n—1) and their derivatives b{*)(t)
are orthogonal just like the functions exp(2mivt) which they interpolate.3
Indeed, by (5.9)

fo‘ bO()BP()dt =0 ifp #v(modn),s=0,1,....,2r—1. (5.10)

For the normalization factor we have by (5.9) and (2.19)
2
[01 |68(2)|? df = Qav 28(1 + >3- kn/u)“"”’)/(l +2>'(1- kn/v)“z’)
4 k / k

v#0(modn);s=0,1,...,2r—1. (5.11)

For s =r, (5.11) reduces to
fol |687(t) |2 dt = (21rv)2’/z (1 — knjyy ™ vZ0(modn). (5.12)
k

Since it is known that, among all the functions in the class #", (periodic
functions with square-integrable rth derivatives, see Section 6) which inter-
polate a function x;, the 2n-spline interpolant Sx, attains the minimal value

of fol |x®)(2)|*dt, we conclude:

For no function x in W, for which x(k[n) = *"%*n (k =0,+1,42,...) is the
value of fol |x"(¢)|2dt smaller than the number (5.12), and only for x = b, is
this value attained.

By (5.9), we have for the values of the derivatives at the knots

bf,S)(m/n) — ﬁI(,S)(27TiV)S eanvm/n

B =B = (1 + g' a- kn/v)‘”*‘) (l + %’ (1- kn/v)‘z’)_l (5.13)

v#0(modn);s=0,1,...,2r—2.

Thus, b$(¢) interpolates the sth derivative of 8 exp(2wivt) at the knots m/n,
and Reb®(t), Imbl®(s) interpolate the sth derivatives of B¢ cos2mvt,

3 The orthogonality property of periodic splines considered in [5] concerns splines on
imbedded meshes, while (5.10) expresses orthogonality of splines interpolating orthogonal
functions on the same mesh.
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B sin27rvt. Since b is a 2(r — s)-spline, and since the interpolating spline is
unique, we conclude

b3(1) =B b,_,, (1), v#O0(modn);s=1,2,...,r—1.

We have this relation for the derivatives of even order only because we have
restricted ourselves only to splines of even order.

To calculate the piecewise constant 52"~ 1(¢), we use (5.9) halfway between
consecutive knots. We obtain

b$2r—l)('m/n) - Bng—l)(zﬂiv)Zr—l e2mivim+1/2)/n
B =g = (1 + 3 (=) - kn/v)") (1 +3(1 - kn/v)‘l’)—l (5.14)

v #0(modn).

Thus, b{>*~Y(¢) interpolates the (2r — 1)th derivative of B~ Dexp(2wivt) at
the points ¢ = (m + 4)/n. The piecewise constant b$*"~"(¢) may be used to
compute b,(t).

Because of the periodicity property (5.2), b,(¢) need be computed only for
0 < t < 1/n. Actually, the interval 0 < ¢ < 1/2n is sufficient since we also have
the symmetry property

b(1/2n +t)=¢"b,(1/2n—1), (5.15)
which follows directly from (5.1).

6. BOUNDS AND APPROXIMATION ERRORS OF THE b,

From the Fourier expansion (5.8) one obtains immediately

LEmMMA 6.1
16,0 < 1, —o<t<wo;v=0,+1,42,.... 6.1)

One also sees that if » #0 (mod~n), then |5,(¢)| =1 if and only if ¢t =m/n
(m=0,+1,42,...), that is, at the knots of b,. For the derivatives b$* we do
not have the least upper bounds; however by (5.9)

[62(1)] < BR(2mv)*

BS = (1 +>' 1 ——kn/v[‘z’“)/(l +2 1= kn/v|‘2') (6.2)
k k
v#0(modn); s=0,1,...,2r—2.

We write 8% as a fraction whose denominator is

0

1+ ai. (A + knp) 2 + (nfy — 1)"2 + S (knfy — 1)~

k=2
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and whose numerator consists of the same terms, with the exponent —2r
replaced by —2r + 5. To estimate B for 1 < v <7 — 1 we use the inequalities

i (L -+ knfy)y 2rts < fom (1 + xn/v) > 5dx = @[A)2r —s—1)"!
k=1 v

(6.3)
i (knfv — 1) 2+ < (m (xnfv — 1)"2r+s dx
=2, Ji

— (V/n)Zr—s(l — v/n)“2’+s+'(2r —_. — 1)—1.
Then

(s)
vk

2r—s —2r+s 2r—s —2r+s+1
1+(3) (2r—s—1)—1+(5) (1—3) +(3) (1—3) Qr—s—1)"!
n n n n n
2r —2r
b))
n n

If 2v < n, then since (v/n)* (1 — v/n) 2" < 1,

<

Q<14+ @mn@r—s—1)" +1+1—vn)@r—s—1)"
=2+Qr—s—-17!
<3,

If 2v>n, then (/)1 —vin) > < (v/n)* (1 —v/n)™%, while 2r—s—-1
+v/n>2r—s—v/n. Making use of the inequality (4,+ B))/(4,+ B,)
< B,/B,if0 < A, < 4,,0< B, < By, (6.3) gives

BR<@r—s—1+vm)2r—s—1)!
=1-+@mn2r—s—1)"!
< 2.

Thus, we have shown
D<3,  v=1,...n—1;5=0,1,...,2r—2. (6.4)
To estimate b ~V(t), we use (5.14):
b= D(t)| < B Py
BV =11+ % (=DK1 —knfr)~'|/[1 + Z (1 —knfyy™®|  (6.5)

Then, forl <v<n—1,

BRrV = |1 + 20:n?) él D2 =) |+ 3 (1= k).
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The sum in the numerator is alternating and has decreasing terms. The sum in
the denominator is larger than

A=npy)y+Q+np)>
= 32y (1 — v} n®)~¥[1 — v[n)* 4 (1 + v[/n)*]
> 203 n?)(1 — v n?)~7,
Thus,
-1 - 14203 n?) (1 — v¥[n?)~!
v 1+ 2(v2/n2)r(l _ VZ/nZ)—Zr
and if 202 <n?, then since (W n®)(1—»*n¥) <1, B4rD<142=3 1If
212 > n?, then
@A) (1 — v nd) 7 < (3 ?Y (1 = V2 [n?) ™ < (3 n?y (1 — v3n?)~2,
hence B¥~1 < 1. Thus, we have shown
BE-D <3 y=1,..,n—1. (6.6)

We have proved |b¥(¢)| < 3(2mv)* for v=1, 2, ..., n— 1. Since b,,,=b,
and b_, = b, this upper bound is valid for all ».
In summary, we have

LeMMA 6.2
[B9(8)] < 3Qmv)s, —w0 <t < oo;v=0,£1,42,...;5=1,...,2r— 1. (6.7)

We now investigate the error in approximating 2miv)exp 2wivt) by b¥(¢).
By (5.9)
|@mriv)se?™ ¥ — b(t)| < 8O (2mv)

8 = 37 |L— knjy| ¥ + 57 |1 k| 6.8)
k
v#Z0(modn); s=0,1,...,2r—2.
We write, assuming l <v<n—1,
89 = (nfy — 172045+ (afy + 172"+ (afy — 1) + (afo + 1)
+ 32 [(knfy — 1)727%5 & (knfy + 1)72% 4 (knjy — 172 + (knfv + 1)]
k=
and apply inequalities (6.3):
85:) < n—2r+s[(1 — V/n)—2r+s + (1 + V/n)—2r+s + (1 — V/n)—Zr + (1 + V/n)—Zr]
+ (2r —5— 1)—1 v2r—s[(1 . V/n)—2r+s+l + (1 + v/n)—2r+s+l]
+Q@r— D7) —p/ny 7+ (1 + v/m)y 1.
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For 2v < n, this gives
8O <RI 4 L 427 4 ]
+ V2L 4 225y 278y 2res(] 4 220 )
from which one concludes easily
B < 22+ 2(y[n) s, 2<v<n;s=0,1,...,2r=2. (6.9)
Thus, we have shown
|@mivy 2™ — bSN¢)| < 2* 22y v¥ Y (6.10)
v=1,..,[n2;5s=0,1,...,2r -2
For 2v > n we make use of (6.7) and obtain
|@mivy e — )| < |Q@miv) ™| + [BO(1)]
< Qmv) + 32m)* = 4Q27)(pin)y v {6.11)
< 22r+2—s(277,)s V2r ns—Zr
v=[n2]+1,..,n—1;5=0,1,...,2r—1.

For the case of s =2r — 1 we use (5.14), according to which, for m/n <t <
(m+ Dn
|(2,n.iv)2r—l e2m‘vz . b,(,z""l)(t)I

. (2,n.v)2r—l'e2n(vt . Bl(JZr—l) eanv(nH—l/Z)lnI
< (27rv)2"‘(|e2""" _ e2ﬂtv(M+l/2)/u| + IIBI(JZr—l) _ 1|)
By (5.14),forl<2v<n
B2 ~0 = 1] < |2 (D*1 — kn/v)™!|
<203 n? (1 — v¥n?)~!
< (4/3)(v/n),
while the mean-value theorem gives

Iezﬂ!vt — ezmv(m+l/2)/n| < 21TV/H.
We have shown

|(27.”-V)2r—l eZnivt _ szr—l)(t)I < 8(2,”.)2r—l V2rn—1
v=1,...,[n2]. (6.12)

For 2v > n we use (6.11) with s =2r — 1, and we find the same inequality as
(6.12). Clearly, the same inequalities are obtained for negative v. Altogether,
we have proved:
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LeEMMA 6.3
|aivy e2mve — BO(1)| < 22 22mr) v 1
v=0,41,...,2(rn—1);5=0,1,...,2r— 1. (6.13)

It is seen that, for fixed v, the error in approximating (27iv)*exp (2mivt) by
b®(¢) is uniformly of order no larger than n"*sfors=0, 1, ..., 2r — 1. That
it is exactly of this order is seen by taking ¢ =0 if s is even, s > 2. Then (5.9)
gives

lim n?~*[(2miv)* — b$(0)]

— __2(27”')5 p2r i J2rts (614)
k=1
= —2i°(2m)* v¥'| B,,_,|/(2r — 5)! s=2,4,...,2r—2.

For 5 =0, the error is of the exact order n%". This is seen by taking £ = 1/2n
in (5.8). We obtain
lim n¥[e™" — b,(1/2n)]

n—rw

=27 3 (k- 1) (6.15)

= p¥rQQ¥+ — )% |B,,|/2r).

Thus, the error in interpolating by periodic 2r-splines, is of order n=2" even for
the function cos2st.

The order n~27** is also obtained for the mean-square error. Indeed, if the
Parseval identity is applied to (5.9), one obtains

U: |Rmivy* et — b-(f)(t)lzdt}uz
= Qn) v¥ s, {Zk:’ (k —v[n)=4r*25 4 (v/n)zs[%, (k — V/n)—Zr]z} ”2/ 616

{1 + @in)* > (k— v/n)‘z’} vZ0(modn); s=0,1,...,2r—1
k
and from this we get
H 2r-—-s ! 3 \S p2nive _ h(s) 2 12
lim n { fo |@mivy 27t — bO(r)|?d)

12

=Q2m) v {% k“"“’} l 6.17)

= QM) (2| Byl [(Ar = 25)32 5=0,1,...,2r — 1.

We now establish a result that is the analog of Bernstein’s inequality on the
derivatives of trigonometric polynomials.
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LEMMA 6.4. For any periodic 2r-spline y with knots at the points m/n (m =0,
+1,42,...) the inequality

[y 1y de < 3@mn [ )2 d

s=0,1,..,2r—1;n=12,... (6.18)
holds.

Proof. If we set y =3"28 9,b,, then y© =3-1 5 b, and because of the
orthogonality of the ¢, we have

n—1
fy poode=3 [ [, 160l (6.19)
By (5.11),forv=1,2,...,n—1,
[l Ib(s)(t |2dt._ (2 )2: Z (k—— N )——4r+2: Z (k / )—Zr 2;
‘0,,) —wnk vin /k—vn)
hence by (6.4) and (6.6)
|5 1Boyzar] [ 1b.ce) 2 de
=Q2m)®» > (1 — knfv)~4*2s / 2 (L —knfv)y ¥ < 3Q2mv)*.  (6.20)
k k
Hence, (6.19) yields

n—1
[ 1yowird <33 @my¥inl? [ lb.0)]2dr
J0 v=0 0
n—1 1
<3Qmny 3 [nf? [, by e
v=0

= 3Qmn) [[ 130 ds
and the lemma is proved.
Since y® (p=1,...,2r — 2) is itself a periodic (2r — p)-spline with knots at
the points m/n [the fact that 2r — p may be odd does not affect the argument],
we infer from (6.18) the more general inequality

fol |yO(0)]2dt < 3(mny>s~ | Jyoird,  0<p<s<ar—1. (621)
We also consider the approximation of f_T exp 2#ivt)dt = (1/mv)sin2mvr
(v==+1,£2,...) by f_’f b,(f)dt. By (5.8)

f_: b()dt=(—1/nm) 3 (k —v/n) > 'sin2a(v — kn) 7 / > (k—vn)?
v # 0(mod n). (6.22)
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Therefore

[, e —bn)ar

2r =2r
Y 4 ",V 1 _ RS _
- (n) Z (k n) [v~1sin 2mvr — (kn — v)~!sin 2m(kn — v) 7]

k

/ [1 + (;"1)2 Z (k - ’31)_2'] v # 0(mod ). (6.23)

It follows that

| fmysin2mvr ~ [* by d|

o[
/ [1 + (5)2 > (k - 7:)_2'], v % 0(mod 7). (6.24)

k

For 7 = 1/n we obtain the asymptotic evaluation

lim 7! [(I/m') sin (2mv[n) — f_'j R0 dt]

— 4 S k7 = 4Q2m)¥|B,|/(2r), v #O0(modn).  (6.25)
k=1

7. UNIFORM APPROXIMATION OF & ,-FUNCTIONS

From here on || |} will denote the £ -norm, |'x|| = sup, |x(¢)|. We assume
first that x is a trigonometric polynomial

x(t) = V_%_N o, ¥V, 7.1

Then since S is a linear operator, the interpolating spline Sx is given by

Sx(t) = vév o, b (2). (1.2)

1t follows that the bounds derived for the error exp (2mivt) — b,(t) in Section 6
readily apply to x — Sx. Thus, by Lemma 6.3, we have

LemMA 7.1. If x is a trigonometric polynomial of degree < n — 1, then

N
[[x® — DS, xi| < 22"”(277)‘( > VZ'I“VI) nsr, s=0,1,...,2r—1. (1.3)

=
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Also, by (6.15),
lim 2 {x(1/2n) — S.* x(1/2n)]

n-—»co

— @ =Byl 3 v, (7.4)

e N
= (-1)°2(1 — 277) (| By, /(2r)!) x2"(0).
This leads to a formula for x2(0):

x@(0) = (=1)"[(2r)!/2(1 — 27%)| By |] ,l.l_rfi n*[x(1/2n) — 5," x(1/2n)). (1.5)

Another such formula follows from (6.14)

x@(0) = i3 1[(2r — 5)!/2] By _|] lim n#~[x(0) — (S, X))},

S=2.4, 2r~2. (7.6)
We remark that since b,,,, = b, (k =+1,+2,...), (7.2) may be written as

A

SX(t) = :é; v bu(t)

3
E= 5 um (1.7)

jv+kn| <N

Comparison of (7.7) with (5.6) results in well-known formulas for the Fourier
coefficients of a trigonometric polynomial in terms of the values on a uniform
mesh. By Lemma 6.1 we conclude

isxl< S 18,

v=0
N
< 2 o). (7.8)
v=~N
Similarly, we have for the derivatives D*Sx:

n-1
DSx()=3 & nbS(), s=0,1,...,2r—1 (1.9)
v=0

and by Lemma 6.2,

1D* Sx) <30y 'S v|8,|

y=0
N
<3 ZN Qav|)|e),  s=0,1,...,2r—1. (7.10)

We extend some of these results to general functions. We consider the linear
space of functions

)= > a e (.11)
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with absolutely convergent Fourier series. We define X, |«, | as the norm of x,
and obtain a Banach space §, (isomorphic to the familiar space /,). Since the
trigonometric polynomials are dense in this space, (7.8) shows that $=S,"
is a bounded operator from &, to € (with uniform norm on x); moreover, the
bound is uniform with respect to n and r. If xx(¢) denotes the partial sum of
(7.11) from —N to N, then xy — x in the sense of &, as N — x. Therefore, by
(7.2) and (7.7)

S x(¢) = lim S," xx(1)
N—x

= 3 abr)

y=—c0

S, B= 5w (1.12)
v=0 k

where the limit of the infinite sum is (7.12) is uniform with respect to ¢, n,
and r.

If x has a Fourier expansion (7.11) with X, |v|?|«,| < = for some p,
0 < p < 2r (p need not be an integer), then we may consider 3, |v|?|e, | as the
norm of x (for p > 0 this is a true norm only if functions differing by a constant
are identified), and this results again in a Banach space §,. We set

s, = 5 @ablrlal.  0<p. (7.13)

Clearly, if p is an integer, then ||x|'g = |[x)||5,. On this space not only S, but
DS, ..., DS as well, are bounded transformations to %, as we see from (7.10).
We may also say that S is a bounded transformation from §, to %, (with
uniform norm on the sth derivative of x).

The results of (7.8) and (7.10) are summarized in

LEmMMmA 7.2
(1S x| < Ixllges X € (7.14a)

I1D*S," x| < 3j|xls, xeF;s=0,1,...,2r— 1. (7.14b)
It now follows that for x € §, (0 < p < 2r)

1

DSIx)= S a,bO()

V=—00

=.§; g0, s=0,1,...,[p] (7.15)

where the limit of the infinite sum in (7.15) is uniform with respect to 1z, n,
and r.
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The following error estimates are based on Lemmas 7.1 and 7.2. We obtain
from these, for x € §, (0 <p < 2r)

lix® — Ds Sx|| < X — D5 Sxpl! + I — x{H 4 ' DS Sx — D5 Sxy|
<2HQmynTr ¥ V2'|1l+ Z @aly]yle|

ivlsN

+3 5 Q@apiylal

<2y [N S el + N0 S (ol
1N >N J

s=0,1,...,[p]. (7.16)
For s =p < 2r — 1, we take N = [1'/?] in (7.16) and obtain

|x?) — DP Sx | < 2277%(27)? {n”'z" > e + 2 [v|"|oc,,[} . (117
Clearly, (7.17) yields e e
Ix® — D? S xi| = o0(1) asn— o,
x €&, p=0,1,...,2r—1. (7.18)
In particular, the spline interpolants S," x conterge to the function x uniformly
ifxeo (e X, o] <o)
If s < p, then we take N=#n — 1 in (7.16) and obtain
Ix® — DS S x| < 22:-+2(277.)s—p||x”m P
xeF, O<s<p<2r (7.19)

Thus, x®) is approximated by D*®S,"x with an error of order O(#°"*) in the
class &,, and an explicit bound on the coefficient of »*~? is established.
Remarkable is that if x & §,,, then even the discontinuous (piecewise constant)
D¥ 1S " x converge to x® 1), with an error term of order O(n™").

For x € &,,, the error in the approximation of x is of order O(n*~%"), just
as for trigonometric polynomials. That the error cannot be of higher order is
clear from the fact that it is of the precise order O(r*~2") for x(t) = cos2nt
[see (6.14)]. Moreover, we can extend (7.4) to the function x in §,,. We write

n*[x(1/2n) — Sx(1/2n)] = n* [xx(1/2n) — Sxx(1/21)]

+ 1% [(x — xx) (1/210) — S(x — xy) (1/2n)]. (7.20)
By (7.19) we have

n¥|(x = xy) (1/27) = S,°(x — xx) (1/2n)] < 227"2Q2m) "> Ix — Xy g, (7:21)

and this can be made arbitrarily small, independent of »n, by choosing N
sufficiently large. Thus, (7.20) in conjunction with (7.4) and (7.21) gives

lim n?[x(1/2n) — S;* x(1/2n)] = (=1)" 2(1 — 2727 (| B, |/(2r)!) x27(0) (7.22)

n—w
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for every x € §,,. Eq. (7.22) may be considered a formula for x?7(0):
x@7(0) = (—1)[(2r)!/2(1 — 272)| B, |] lim n*'[x(1/2n) — §" x(12n)], x € Fa-.

(7.23)
In the same way (7.6) is extended, and gives
X(0) = i 1[(2r — 5)1/2| By—,|] lim n2[x9(0) — D* 5" x(0)],
s=24,...,2r—2, xeg,. (7.24)

From (7.23) we conclude that if x € §,, and x(1/2n) — S,"(1/21) = o(n™?") as
n — o, then x%7(0) = 0. Using only the sequence n=2" (m=0,1,2,...), we
may also conclude from (7.23) that if x€ §,, and [x — S, x||=o(n" %) as
n — o, then x®)(k-27™) = 0 for each m and integer k. Since x**" is continuous,
this implies x{?") = 0, hence x is the constant function. We have proved:

If x € &, and ||Ix — S,” x|l = o(n™?"), then x is constant.

In similar fashion we conclude from (7.24):

If x € ,, and |Dx — DS S, x|| = o(n*~%") for some s=0, 1, ..., 2r — 1, then
X is constant.

We summarize several of these results in

THEOREM 7.1. Suppose S," x(t) is the periodic 2r-spline (r = 1) that interpolates
the function x(t) at the knots m/n (im =0,£1,22,...). If s is one of the integers
0,1, ..., 2r—1 and if xe€§, for some p, s <p<2r, then |x® — (S*x)¢)|;
= O(n ?7%) [o(1) if s = plasn — . Inparticular, if x € §,,, then ||x*) — (§,"x)©)||
= O(n2*%), and if |'x®) — (S,"x) 5| = o(n2"*%) for some 5, 0 <5< 2r — 1, then
X is constant.

The special case p = 2r — 2 (with the weaker hypothesis x € %,,_, in place
of x e {,,_, and with a more general sequence of meshes) appears in [5,
Theorem 4]. However, the conclusion there is only x — (S,”x)® = o(1) for
s=0, 1, ..., 2r— 2. In the same paper the case p = r appears (again x € €,
in place of x € §,, and a more general sequence of meshes is considered), and
the conclusion is x*) — (S,"x)®) = o(1) only for s=0, 1, ..., r — 1. There are
more precise results in [7], however this source was not available at the time
this article was written. Related results are also found in [10].

8. MEAN-SQUARE APPROXIMATION OF %, FUNCTIONS

We now consider functions x(¢) with Fourier expansion ¥, «,exp 2#ivt)
for which

S e < . 8.1

V=—00
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The number p need not be an integer, but we do assume p > 4. We call the space
of these functions #”,, and provide it with the norm

© 1.2
b, ={ 3 @ablya (8.22)

which clearly comes from an inner product. #", is a Hilbertspace. In particular,
if p is an integer, then %", is the Sobolev space of periodic functions x that
have derivatives x’, x”, ..., X~ with x»~Y absolutely continuous and the
Lebesgue derivative x® square-integrable. The norm defined above is also
given by

lixlly-, = Uol |x("’(1)|2dt}”2 = x|}, (8.2b)

ifpisaninteger. | |, willdenote the %, norm from here on. As before, functions
1
differing by a constant are identified [or oy = fo x(t)dt =0 is assumed for

each x].
Since 3, [v|*#|a,|? < o implies
R I DR LT R BTN (5
v>0 v>0 v>0
we conclude §,=# ,< §p_12—c for every e > 0. It then follows from Theorem
7.1 that ix® — DsS,"x|| = O(n*"?*1/2%¢) for xe # ", and s <p — 4. We will
show that this error is actually O(n*~?*!/2) and that the root mean-square error
Ix®) — DS S xii, is O(#*~P).

The function (2mip)* exp (2miut) — b (¢) is orthogonal (in %£,) to the
function 2miv)*exp (2mivt) — b¥(¢) if p, v are integers not congruent (modn).
Therefore, if

x()= 3 a, e
Iv]<N
is a trigonometric polynomial of degree N < [n/2] (if N =n/2, it is assumed
that either oy = 0 or «_y = 0), then by Lemma 6.3

IX® — D Srxl< S o f? jol |@mivys €2t — ()2 dt
[v|<N

v <

< 24'+4(277)25( Z |V]4rlav|2) n2:—4r. (8.4)
!

We formulate this as

LemMa 8.1. If x is a trigonometric polynomial of degree N < [n/2], then

| — D58, x|}, < 2227 H||x 1y, BT, s=0,1,...,2r—1. (8.5
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The order of this error bound is sharp. Indeed, (6.17) gives for any trigono-
metric polynomial x

lim n2[x — D §," x|l = {2 B3 [(4r — 25) 1} |xl| -,

n—>cc

s=0,1,...,2r— 1. (8.6)

The spline interpolant S may be considered as a linear transformation from
W, to # ;. We show that this transformation is bounded if s <p — 4.

LemMMA 8.2. If xe # ,(p> %),
x(t) — Z oc,,ez"“" (N> 1)’
v

|ZN
then
18" x|, < 9Q2m)*"2 207 (2p — 25 — 1) ' N~ 34| x|, s<p—1.

8.7)

Proof. Since W ,< §, for p >4, the Fourier series (7.11) of x converges
absolutely, and by (7.9) we have

DSx=3859, £=35 am (8.8)
v k

=—00

where we let v range from —[(n — 1)/2] to [n/2] instead of from O to n— 1.
Then, by Lemma 6.2,

1D Sxl? = 3 |€,116$]1,2

<927 SvElE|2, s=0,1,...,2r— 1. 8.9

1 4

By the Schwarz inequality,
|2 oty inl® < D v+ kn|722%2 3 (v + kn| 27725 o, 0| % (8.10)
Using the simple inequality
> v+ ka2t <207 (2p — 25 — 1) NT2ptast

lv+kn| =N
and the fact that |v| < |v + kn| for the values of v employed, we obtain

2 V“l% %yl <2071 2p — 25— )T N7 5 ulPfa |2 (8.11)

p=-o

(8.11) together with (8.9) yield (8.7).
Now assume x € #7, (p > %) and

xy@)= 2 o, e¥*  N<[nf2]

lvi<N
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Then we obtain, using Lemmas 8.1 and 8.2

P — D5 S|, < [|x§ — D Sxally +i[x® — x4y 4 [ D*Sx — D* Sxyly

1,2 1,2
czany| 3 Hal] w3 @mal|
>N

lvl<N
l,2.
+ 3y {2n~'(2p 25— )TN (277V)2"]oc,|2}
rj>N

(8.12)
We choose N = [n/2] and find

1/2

”x(s)_ DSSXHZ < 2p+2(277.)s—p{ z lzﬂ.vllplavlz> ns-P
|[v|<N
1/2
+2"'5(27r)5_"( > |277V]2”|ot,,|2} P
Wi>N

1,2
+ 3Q2m) P27 (2p — 25 — 1)—”2{ S [21rv|2"[ot,,]2: e,
lv|>N

(8.13)
Therefore, we have proved

X — D* S x|l < ) 72772 [1 + 3(2p — 25 — 1)1 xi Ly,
s+i<p<2r. (8.14)

Thus, x* is approximated [in the square-mean} by D*S,"x with an error
of order O(#*7?) in the class #", (p > s +3), and an explicit bound on the
coefficient of n°7 is established. For x € #7,,, the error in the approximation
of x® is of order n*~', just as for trigonometric polynomials. That the error
cannot be of higher order is shown by extending equation (8.6) to general
functions in #”,,. By the triangle inequality we have

|2 =S{|x® — D5 S|, — n?~||x§ — D° Sxyll, |

n(x — xy) = DPS(x — xp)fl. (8.15)
By (8.14) we have

R (x — xx)® — DS (x — xp)lly < Clix — xyllye,, (8.16)

with a constant C that is independent of n and . (8.16) can be made arbitrarily
small by choosing N sufficiently large (independent of #). Thus, with the use
of (8.6) and (8.16), (8.15) yields

lim n?=5|x® — D S," 8], = {2| By [(4r — 25} 2ix] 'y,

n—o

s=0,1,....,2r—1  (8.17)
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for any function x in #7,,. In particular, this implies

If xe W, and ||x®) — (SM) xl, = o(n*~ %) for some s=0, 1, ..., 2r — 1,
then x is constant

We summarize some of these results in

THEOREM 8.1. Suppose S,"x(t) is the periodic 2r-spline (r > 1) that interpolates
the function x(t) at the knots m/n (im =0,x1,22,...). If s is one of the integers
0,1,....,2r—landif xe W, for somep,s+% <p <2r, then

Uol [x() — (S, x)(¢)|? dt} 2 _ O™ asn— x.
In particular, if x € W,,, then

([ xo) = (s 0)2de) " = 0,

and if this error is of order o(n=%*) for some 5,0 < s < 2r — 1, then x is constant.

Similar results for the cases p =r and p = 2r have also been obtained (for
more general meshes and more general types of splines) in [8, Theorems 7 and
13]. The conclusion of that paper concerning the case p = 2r is weaker, inas-
much as O(m*~%) is replaced by O(m*~2+1/2), fors=r+ 1, ..., 2r — 1. Related
results are also found in [7}; however, this source was not available when this
article was written.

The case p =r deserves special attention. It is well known (see [/], p. 133;
[3] and [5]), that among all functions y € #”, that interpolate a given function
x € W, at the points m/n (m = 0,£1,+2,...), the 2r-spline y = S,"x attains the

minimal value of [;l [y®)(¢)|*dt and that fol (S X)) x§(e)de = 0 for any
function x4 € #", for which x4(m/n) =0 (m = 0,+1,...). Therefore,

1D S x|l <|*ly,, x€#, (8.18a)
and
Ix® — Dr S xl)? = x5 — 1IS"x %, xe¥ . (8.18b)

We may now state

THEOREM 8.2. Suppose S,"x(t) is the periodic 2r-spline (r > 1) that interpolates
the function x(t) at the knots mjn (m = 0,+1,:2,..). If x€ W",, then
1 1 1
jo IXO(2) — (8,7 x)"(t)| 2 dt = fo |x(2)|? dt — fo (S, x)(e)]2 de

=o(l) asn— . (8.19)
Proof. By (8.12), using N = [1'/?] (which is <[r/2] for n > 6), we have, for
n sufficiently large

1/2 172
|x® — D 8,2 x]|, < 22+2 n-—r/2{ S (277V)2'|°‘u]2} +2 {[ > (2'”")2'|°¢u|2}

lvi<N |>N

=o(l) asn— . (8.20)
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This result is remarkable since the approximated function is x), which is
an arbitrary function in .%,. This case is dealt with in [§, Theorem 7], but the
conclusion there is only {\x™ — D' S,"xij; = O(1) as n — .

By Theorem 8.1, |ix — S,"x'; = 0(n™®) if xe ¥, (p>31). The converse of
this statement is not true. However, we now prove a result that is very close to
a converse.

THEOREM 8.3. Suppose S."x is the periodic 2r-spline (r > 1) that interpolates
the square-integrable function x at the points min (m=0,~1,£2,...), and

{fol |x(t) — S,"x(t)lzdt}” = 0™ for some | <qg<2randn=1,2,4,8,....

Then x is equal almost everywhere to a function x, € W ,, where p is the largest
integer smaller than q.

Proof. If
Jx—S*x], <Cn™, n=1,2,4,..., (8.21)
then
i1S"x — S x|, <2Cn™, n=124,.... (8.22)

The function S"x — S2"x is a 2r-spline with knots at the points m/2n (in =0,
+1,42,...). By Lemma 6.4, fors=0,1,...,2n — 1

ID*S"x — D*S™xi, < Cyns™,  n=1,2,4,... (8.23)
where C, = (12)'2(4r)* C. Thus, if m = 2*a (k a positive integer), then

k~1
WD S"x — DPS"xll, < 3 ||DFSYrx — D SNy
=0 2

k-1

<C 2 @n

10
< Cyn7(1 — 2579), (8.24)

It follows that, for s =0, 1, .... p the sequence of functions D*S"x (n=1, 2,
4,...) converges (in .%,), while by hypothesis the sequence S™ x converges to x.
Since #, is complete, the conclusion of the theorem follows.

It is not true that {ix — $"xl, = O(n™ %) (n=1,2,4,...) implies x € #,,.
This is seen by taking for x a 2r-spline that has knots at the points m-27*
(m=0,%1,42,...), for some positive integer k, with x® 1) discontinuous at
some of these knots. Then $"x = x for n > 2%, but x ¢ #,,.

9. UNIFORM APPROXIMATION OF ¥, FUNCTIONS

As in the preceding section the functions to be approximated by 2r-splines
are periodic and in #”, for some p > 1. As before, || || denotes the .Z_-norm,
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| lly-, the norm in #”,. The spline interpolant §, considered as a linear trans-
formation from #°, to €, (s <p—1) is bounded. A bound for this trans-
formation is given in

LEMMA O.L. Ifxe W ,(p>1),
x(t)= > o« (Nx1),
{vi=N
then
1D S, x|| < 327y~ ?{2n~'(2p — 25 — 1)~ N72P 24112 ]| .,

s<p—13. .1

Proof. We proceed as in the proof of Lemma 8.2, with (8.8) replaced by
1D* Sx < 3 16,1 1571
<3Qa¢ S ¢, s=0,1,...,2r—1. 9.2
vi
By (8.9) and (8.10) we have
] < 207! (2 — 25— )7 NT2924 S o R 27222
hence
Sl < {27! @p — 25— DTN S | 20a |22,
v u

==00

so that (9.2) yields (9.1).
If we apply the Schwarz inequality to the finite sum in (7.3), we obtain for

x(t)= 2 o™ (N<n-—1)

Iv|<N

1/2

”x(s) _ DSS,."XH <22!‘+2(2,n.)5—p{ Z lvl4r‘2p Z {VIZp[aV‘Z} ns—Zr (93)

lv|<N Wi<N
and since X [v|*" 2 < 2N + 1) N*¥ 22,

1/2

[x® — Ds 8" x|| < 22 %(2m)* {(2N+ HN* 5 |V|2P|ay|2} s

v|<N

p=>0;5=0,1,...,2r— 1. 9.4)
Using (9.4) and Lemma 9.1, we find for x € #7, (p > %), with xy the partial
Fourier sum as before,
[l — D= Sx] < x5 — D* Sxy] + Ix® — x| + | D Sx — D* Sxy
< 22r+2(21.‘.)s—p{(2N + 1) N4r—2p MZ:N lV|2p|‘xv‘2}l/2 ns—2r

+ 3 2] + 3@myrnTiCp - 25 - 1)t N2ptasHl
vi>

3 el 2y, ©9)
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We take N = [n/2] — 1, and obtain

L2
”x(s) — D*‘Sx!! < 20‘2(277,)5:—17{ z |1'|2p|1 } proptl 2

>N

1,2
+ 20—5(27.‘.)5—1.7 {(2‘0 — 25— 1)~l Z‘ |27TV|2HIOCV|2} ns-—p+l/2

1:2
+3- 2P‘S(2w)s"{(2p 25—1)7" > IZWI“I%-IZ} nTHEZ(9,6)
>N

y|=

where we have used the inequality

v|>N Wwi>N
“1/2
<TWk@—%—w*ZIWM%P w2 (9.7)
fv|>N f
The final result derived from (9.6) is

. -1 1,2
HW—WWﬂ«M”F%j%Fj)W%WMW

s+r<p<2r. 9.8)

Thus, x® is approximated uniformly by D*S,"x with an error of order
O(ns~P*'2) in the class #7, (p > s + %), and an explicit bound on the coefficient
of n"~P*1/2 5 established. For x € #”, and s one of the numbers 0, 1,...,r — 1,
the error is of order O(n~"*5*1/2), and that this is the best possible, is proved
below (see Theorem 11.2). We state the result in

THEOREM 9.1, Suppose S, x(t) is the periodic 2r-spline (r > 1) that interpolates
the function x(t) at the knots m{n (m =0,+1,42,...). If s is one of the integers
0,1,....2r—landif x€ W , for some p, s + % < p < 2r, then |'x) — (§,"x)® |
=0 """ asn — oo,

In [6, Theorem 3] it is proved that if x € #7,, then |x®)(¢) — DS x(t)| = o(1)
fors=0, 1, ..., r— 1, uniformly in ¢ on a sequence of imbedded meshes. In
[8, Theorems 6, 8 and 10] the cases p = r and p = 2r of Theorem 9.1 (for more
general meshes and more general types of splines) are proved.

10. A REPRODUCING KERNEL

As remarked before, the space %, plays a particular role in the analysis of
2r-splines. By W = W " we denote the subspace of %", whose elements x
satisfy the conditions

x(vin) =0, v=0,1,..,n—1. (10.1)



APPROXIMATION BY PERIODIC SPLINE INTERPOLANTS 55

# isa Hilbert space which has a reproducing kernel, that is, a function K, € v
such that

*(r) = (%, K., = [ x0() K@) dt (10.2)

for each x € ¥ and each real r. In this section we find ex plicit expressions for
K..

r-fold integration by parts in (10.2) shows that K., is the reproducing kernel
of # if it satisfies, for 7 # 0, +1/n, 4-2/n, ..., the following conditions

() K.€€y 0 K1+ 1D)=K,(t), ~0w<t<o
@ii)) K, (v/n)=0, v=0,1,..,n—1

(10.3)
(iii) K®(t)=0, t#0, £l/n, £2/n,...;t#7
V) K& (r+0)— K (7 -0)=(~1), —w<7<o0,
The function
Ct) = [(~1)/2r)"] [B,, (1) — B,(t — 7)] (10.4)

is seen, by the use of (2.5), to satisfy (10.3, (iii), (iv)). To obtain a function that
also satisfies (10.3(ii)) we subtract the spline interpolant S," C,(¢), obtaining

KA = C.0)="3, Com)sele = i) (10)

Clearly, K, satisfies (10.3); hence is the reproducing kernel of . We develop
a more explicit expression for KX.,.
By definition of s, [see (2.25)] and by the use of (2.6), we have

"5 Bulr —vim) seft — vin)

=S, Balr vl 'S, (o= 17 By) Bar —vln) B+ i)

—1

=n"% 32,.(117') —n¥ BZr(nt) BZr(nT)/BZr + nzo Pu-v éZr(t - l“'/n) BZr(T - V/ﬂ).

Hov=
(10.6a)
Hence, using 3, p,—, By(v/n) = &y, ,, which is a result from (2.25):

'S Bl = vin) = B )]st — i)
= n~¥[B,,(nt) + B, (n7) — By, (nt) B, (n7)| By — By

— B (t) + "fl P Bar(t — i) By(z — vin). (10.6b)
pov=
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Therefore, (10.5) gives
K.(t) = [(-1)/Q2r)'] [n~2(B,.(nt) + B,(n7) — B,,(nt) B,,(n7)|B,, — B,,)

+ Z Pu-v 2,(f I“‘/n) éZr(T - V/H) - é’}_r(t - T)] (107)

Hav=0
This formula makes the symmetry of the kernel apparent.
We develop still another formula for X,, using the functions b, for this
purpose. By (2.20), (2.6) and (5.1), we have

" g_ Pu—v BZr(t i n) BZr(T - V/n)
S S A e Bt in) By — vin) (10.8)

wZop 50
=n! "2; A bu() B(7) + 17 B (nt) Boy(n7)[ By,
If this is used in (10.7), we obtain
KA(t) = (=112 [ (B, (nt) + B, (n) — By,)
+a! i; A, b,() () — Byt — ). (10.9)

We also give the Fourier expansion of K. Using (2.7) and (5.8) in (10.9),
one arrives at

K(t) = [(=1)/@r) 1 n~ 2By (n7) — By,)
-+ (277)—2r zf k—Zr(e—erik-r _ %) eznikt_ (1010)

11. ExacT ERROR BOUNDS

Let u(x) be a linear functional defined for a class of functions x that includes
W (for definition see Section 10), and which is bounded on 1// " Let its
bound be denoted by ||u]] = |iu|ly-»; thus:

fjtllrn = sup |u(x)]. (1.1

XEW "
Ixll#r <1

Using the reproducing kernel K, of 1/7," (see Section 10), we have u(%) = (x,
u(K)); hence

lfl} = (K by, = (u(u(K)))' 2. (11.2)

It follows from general theory (see [/} or {2]) that u(Sx), where Sx = §,"x

is the spline interpolant of x, represents the median of the values of u(x) for
X in the class

D=27&;p): |IMly, < p x(vin) =€, v=0,1,..,n—1. (11.3)
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(2 is a ““disk” in #",), and that the maximal deviation of the values u(x) from
the median in 2 is

sup |u(x) — 1(Sx)| = Ilufi(p? — |IS[5,) /2. (1.4
€
We shall calculate ||Sx|ly,, and [[u|l;- » for various functionals u.
a. By (5.6) and (5.8)
IS4, = CIy@ntn S WA &=t S qF g, (1L5)

This is an explicit expression for ||Sx|},-. We may also use the spline approxi-
mation of the Fourier coefficients to express [|Sx|ly,. We denote them by
fv_ . and have, by (4.7), for v # 0 (modn)

g, = fo' Sx(t)e ¥ dt = (<1 ~12r)! Q) ¥ X nf,. (11.6)
Therefore, (11.5) becomes

ISxly, =3 @m Bk =12, (11.56)

b. Let u(x) = u,(x) = x(7); that is, we consider interpolation at the point =,
and |ju,|| is a significant measure for the error in interpolation. Since u,(K)
=K,, (11.2) gives

el = 1K,
To calculate this we use (10.9), according to which
1Y KO = (nr[r) B, (nt) — (Ur) Bt — ©) + (n71/(2r)Y) "i' X, B(1) b(7).
v=0 (11.7)

If this function is expanded in a Fourier series, the coefficient of exp (2mivt) is
0if v =0, and is found to be

D)2y (e — b(7)),
by (2.7) and (5.10), if v =41, 42, .... Therefore

1/2
R P O T (11.8)

Although in deriving this we assumed r to be even, it also holds for r odd.
Clearly, |exp(2#ivt) — b,(7)| = |exp(-2mivt) — b_,(7)|; hence (11.8) may also
be written as

o0

i = @y (2 8 vl - o) (11.9)

V=
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Weevaluate the order of ‘iu,|l,;- . as n — o, By (5.29), we obtain from (11.9):

%(277)2,';[”7“2 — Z V—2r|e2nivr _ b;.-(T)!z 3 z V—Zrie2ﬂivr . bu(T)’z

1<v<[n/2) v>[n/2]
< 24r+2 n—4r z V—Zr < 4 z V—Zr
1<v<n/2] v>[n/2}
< 2¥H Il A(p[2)~ 2+ (2r — 1). (11.10)
Thus,
e < 232 T2 p=1,2,..5n=1,2,.... (l1L.11)

The result ||ju,} = 0(n~"*1/2) was proved by Weinberger [9] for the case r = 2,
x nonperiodic.

We now show that 0(n"*1/2) is the exact order of sup,iu, |, Using
7= 1/2n and v = kn (0 < x < 1), we have by (5.8)

n12y | emvin — b (1/2n)] = C(x)yn~ 142 (11.12)
where we have set
Cl) =2~ S (k- )2 / S (k — k). (11.13)
k odd k
Let Cy > 0 be chosen such that
C)=Cy I<rk<i. (11.14)
Then by (11.12)
[3n/4]
¥l e b (1120)] > $Cy? (11.15)
v=[n/2]]

and by (11.9)
WV 2uy el > CoRm)™ 272, n=1,2,...;r=1,2,..., (11.16)
which proves the assertion. By using the inequalities
S =[Sl > S =0 [l 42 3 G-
k odd k k odd k odd
> =) [ +21 - ) ]>1/3, I<r<i
we see that Cp = 221371 satisfies (11.14). Thus (11.16) becomes
B2y llprn > QB 72712, n=1,2,...;r=12,.... (11.17)
We now prove the existence and determine the value of
LHm 2" 1Y2|uy 5l e (11.18)
By (5.8) o
e = (120 = 2| 3, (6 =) [ Ge—vimy
k odd k
=2, v=n3n"5n,...,
=0, v=0,2n,4n,.... (11.19)

, v#0(modn)
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We introduce the functions
CD=z"+>"(z—k)s, s=12,.... (11.20)
k

Then
CE2)=2 > (z—k)* Ciz+H= 2sk %d (z—Kk)=s. (11.21)

k even

Substitution of (11.19), (11.20) and (11.21) in (11.8) yields
1/2
il = @) {2742 5 07 CLf2+ DICHGI) + 2727 Culh)]
v#

(11.22)
Since Cy(z + 1) = C(2), one finds

3 v Ch2n + )] Chivim)

=:§1 [C%,(V/Zn +4 ) S (v+kn)? + C2,(v[2n) k%d(v + kn)_z']/Cg,(v/n)

even

n—1

=n72r27r 3 [Cfr(V/2n +3) Cor(vi2n) + CE(v/2n) Cyrlv[2n + %)] / C3v/n)

v=1l

=73 Cy0120) Coly2n + ool (11.23

Therefore, (11.22) may be written as

n—1
n Yy ol = (2w)—'2—2'+1{}1 z Cy(v[2n) Cy(v[2n + )| C,(v[n)
v=1

1/2
+ 22 cz,(%)} (11.24)

C(2) is a meromorphic function with poles of order s at z =0, +1, 42, ...,
From the well known Mittag-Leffler expansion of cotangent, one obtains

C(2)=[(-=1y"'=%/(s — D] cots Vanz. (11.25)

The function C,,(31)C,.(3t + 3)/C,(t) occurring in (11.24) is analytic in
0 <t < 1. Indeed, it approaches the value 2* 3, .44 k=% both as ¢ approaches
O or 1. Therefore, (11.24) is the Riemann sum of a convergent integral, and one
obtains

lim V3l = @) 7 2700 ([ Co30 4 ) NI (0)) . (1.26)

We have proved

THEOREM 11.1. 2712(2/3) ! < 77w~ 12gup [x(7)] < 2’2, n=1,2, ...;r=1,
2, ... if the supremum is taken over —c < 1 < « and over the class of functions
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x of period 1 which vanish at 0, =-1/n, £2/n, ... and for which "0[ [x()12de < 1.

Moreover, " "2sup Ix(1/2n)" approaches a positive limit as n — =, given in
(11.26).

c. We now assume r>2 and consider v(x)=1t,(x)=x'(7). Then 1(K)
= (djd7) K, and (11.2) gives

o751 = ldK-[drll,. (11.27)

By (11.7) the coefficient of exp(2mivt) in the expansion of (d/dr) K, (t) is found
to be

(=1Y"2Q2mv) " (—2mive 2"'" — b '(7)).
Thus,

£ 172
[o)]=Qm1{2 > u-Zr"2|e2m'"7—by'(f)/zww} . (11.28)
ve=1l

One proceeds as above to show that ||v, || » = O(n™""3/?) uniformly in .
In the same way one can prove that if r > s + 1, and v,(x) represents x“)(7),
then ||y, /|y n = O(™"*5*1/2) uniformly in =, and that this is the exact asymptotic
order.

For the case where vy4(x) represents x'(0), we prove the existence and
determine the value of

fim 77320, (11.29)
By (5.8),
1= b,/ ©)2miv=(nfy) S kk—viny>| S (k—vjm)2
k=-w k=—x

= [Coiv[n) — (n[v) Cor (v/M)][Car(v/n), v #0(modn)
=1, v=0(modn) (11.30)

where we have used the functions (11.20). Substitution of (11.30) in (11.28)
yields

e = @y 5 27 Chs(u) = 207 Co 4 oo

12
+ v Covm))CE(v[n) + n72 2 S k‘z'”} , (11.31)
k
and since C(z + 1) = C(2),

)| = @a) - (S [Croy ) = 2C3, )

+ Cap oo1n) ColG [ Colof) + 772 57 k-m}”z. (11.32)
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The function [—C32,_,(t) + Cp_y(t) Co,(£)]/Cyi(2t), occurring in (11.32), is
analytic in 0 <t < 1. It approaches the value ¥, k"2"%2 as t approaches 0.
Therefore, (11.32) is the Riemann sum of a convergent integral, and one
obtains

lim =3 Aoyl = (2m) ™ [ [Copa(8) Corl) = Chi(DCarl0)

e J

r=23,.... (11.33)

Y172

We have proved

THEOREM 11.2. There are positive numbers c,, C, depending on r only, such
that fors=0,1,...,r—1

¢ <n " V2sup |x9(7)| < C, n=12,...;r=2,3,...

if the supremum is taken over —x < 1 < 0 and over the class of functions x of
period | which vanish at 0, £1/n, £2/n, ... and for which Jol |x®()|2de < 1.
Moreover, w=32sup |x'(0)| approaches a positive limit as n — «, given in
(11.33).

d. For the quadrature functional w(x)=w,(x)= f_’ x(t)dr, we have
Ww(K) = f_’f K,do, and (11.2) gives

ol =|[7, Kodo

(11.34)

#r ’

Using (11.7), this gives
@ r 1/2
wil =2Qm)"! {2 > v 2(sin 2nvr — v f b(t) dt)z} . (11.35)
v=1 -7

We work out the order of i{w,|l,;» as n — « for the case 7 = 1/n. By (6.22)
we have

sinQavim) — v [\ b(t)dt
= sinQmv[n) S k(k — v/n)=>! / S (k—viny ¥, »#£0(modn),

=—2mv/n, v=0(modn). (11.36)

Therefore,

1w, ull = 2(2) -1 {2 y~225in? (2mv/n) [z k(k — viny 2!
v2l,v#0 k

/ S k- u/n)-zr]2 + 872y 72 S V-Z':m. (11.37)

vzl
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We use sin®(2zvjn) < 4w v % in (11.37), and for 2v < n the inequalities

0< > k(k— v,’n)ﬂzr-l/i (k —vin) 2 < (w/n)™ > k(k —vin)=>r
k k k

< (v/n)z’ [kx‘zl k-Zr + “;\i'l k(k _ %)—Zr‘l:'

k

= (Vlin)Zr [22r i k—zr + (22r _ %) i k‘ZrAl]
h=1 k=1

< 2% (vin)?. (11.38)
For 2v > n, we have, more directly, by (5.12)
|sin (2av/n) — v J_‘f/ b,(t)dt| < dmv|n. (11.39)
Thus,
(Wil <2@m)™"! {24”5 ain4r2 22( v 4 25 g2p2 22\ e
+ 8Tr2n—2r—2 Z V—Zr}’
or !

Wilgrn < 272770712 n=1,2,..;r=12,.... (11.40)

To show that 7"~ !/2|jiw} i1 » tends to a positive limit, we make use of the
functions (11.20) and write

2
> vy ¥ 25in? (27rv/n)[z k(k — V,"Il)_zr_l/z k- V,/n)_:']
“ 3 K

0

¥

n—1
=n"¥"2 21 sin? Qav/n) [~ C3,.\(v/n) + Calvin) Cap o (v[m))/ Car(v]n).

(11.41)
Substitution of (11.41) in (11.37) yields

n—1I
il = 2Q2m) ! {n-‘ >, sin? Qrvin) [y (v/n)
v=

1/2

o) Car s I Cvf) + 820" S } 142)
IS |
From this one concludes as above

fim 3 b = 2@y [ desin? 2mt) [Co(t) Caraf0)

n—rc

- C%rﬂ(l)]/Cz,(t)}”Z- (11.43)

The integrand is analytic in [0,1]. It approaches the value 472 3" k=% as t
approaches 0. Thus, the limit in (11.43) is not 0. We have proved
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Taeorem 11.3. sup|[" x(0)de| < 272 nr12% n=1,2, .5 r=1,2, ...
if the supremum is taken over the class of functions x of period 1 which vanish
at 0, +l/n, X2/n, ... and for which Jol xOO)2dt< 1.  Moreover,

nrHiiz supUl:'; x(t)dt! approaches a positive limit as n — », given in (11.43).
=1/n

¢. Finally we consider the Fourier coefficient functional

£ =[x erd, v=0,41,12,.... (11.44)
By (10.10) we have
FAK) = @my [ — b (1)), v#0
— (1)) n¥[B,(nt) — By, v=0. (11.45)

Using this in (11.2), we find

1/2
il = @™ | e =) 21 + G 3 Ge =iy 1)

v Z 0(mod n)
= Q2mv)™", v#0,v=0(modn)
172
= (2mn)™" {Z' k‘z’} =n"{|B,|[(2r)1}'2, v=0. (11.46)
k
Clearly, !if,l is of order O(n™"). More precisely,
lim i f, |l = {| Boe|/@r)1}Y3, v=0,£1,42,.... (11.47)

It is noteworthy that this limit is independent of ». We have proved

THEOREM 11.4
lim 1" sup| fo’ x(6) €2 dt| = {| Byl @Y, r=1,2,..,

n—>o
if the supremum is taken over the class of functions x of period 1 which vanish at
1
0, +1/n, +2/n, ... and for which (0 x(D|2dr < 1.

We shall now show that x,(¢) = exp(2mivt) is an extremal function for the
approximation of the value f,(x), given x € &. That is, equality holds in (11.4)
for x = x, if u =f, and p? = |'x, ||}~ = (27v)*. Indeed, since Sx, = b,, we have
by (5.11)

5 = 15150 = {@my = @y [ 5 Ge = vin) ) v #0(modn)
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and by (11.46)
iAllip? — 1Sx,15-)'2 = 1 — (v[m)™> / 2 (k—v/nmy™¥, v#0(modn). (11.48)
On the other hand, by (5.8) ’

[i(x) = fASx)=1— (vin)™% ‘; (k—vin)™>, v#0(modn). (11.49)

Thus, we have proved, for v # 0 (modn)

Fx) = £S5 %) = filwallx e, — 187 x5, 312 (11.50)

For v = 0. both sides of (11.50) are equal to 0, and for v = kn (k = 41,£2,...),
both sides are equal to 1. Thus (11.50) is valid for every v. In summary, we
have

THEOREM 11.5. Let Z," (n=1,2,..., r=1,2,...) be the class of functions of
period 1 which have fixed (real or complex) values at 0, +1/n, £2/n, ... and for

which [ x"(2)|*dt < 1. Then the median value of the Fourier coefficient
Jo !

J»01 x(t)e 2™ dris 0 if v=kn (k = £1,+2,...); otherwise, it is

A n—1 ,
£, ()= (Un) 'S x(raj) =2miomin / 5 (1 — knj) ¥,
k

m=0

The least upper bound of the deviation of the median from the true value in
D5 is

n—1 N 1/2
1t ='3, @y b0 E09)

where
2 n-1 )
fv(x) = (l/l’l) 20 x(m/n) 8—2"”""""

and | f.| is given in (11.46). The coefficient ||f,| tends to 0 like O(n™") as n — =,
and
lim w'|lf,.} = {| By |/(2r)1}' 72,

independent of v. The least upper bound is attained by x(t) = 2mv) Texp 2mivt)
in 2"
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