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1. INTRODUCTION

If nothing is known about the function x(t) but its values at a finite number

of points and a bound for J~ [x(r)(t)J2 dt (for some positive r), then its 2r-spline

interpolant Sx(t) is the best approximant (estimant). "Best" means that for
any linear functional u(x), for example u(x) = X(T), the value u(Sx) is the
median of all values u(x) consistent with the given data. The optimality of
spline interpolation in this sense follows directly from the general theory of
optimal approximation and estimation as established in [1, 2]. Many other
aspects of approximation by spline interpolants have been studied (for
references see [3], [7] and [8]).

In this paper we consider periodic functions x(t) and n interpolation points
equally spaced in an interval of periodicity. Sx is said to be a 2r-spline inter
polant of x if Sx is periodic, has a continuous derivative of order 2r - 2, is an
algebraic polynomial of degree.;:;; 2r - 1 between knots tk (the interpolation
points), and Sx(tk) = x(tk). The usual cubic splines appear as 4-splines in this
notation. We establish explicit formulas for Sx and for u(Sx), where the
functional u represents interpolation, differentiation, quadrature, or a Fourier
coefficient. No matrix inversion is needed to compute Sx or u(Sx) if use is
made of certain numerical coefficients (depending on rand n), whose explicit
form is given [Sec. 2-4], and which can readily be computed. Especially
noteworthy is the simple approximate value for the Fourier coefficient

'I
(Xk = Jo x(t) e-2"ikt dt of the function, determined from the spline interpolant:

n-1 00

Q(k~ (~k/n) L x(v!n)e-2"j<'k,n, ~kl = L (1 -In/k)-2r
v~o l~-x>
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(Section 4). It differs from the simplest approximation only by the factor 'k'
We also find optimal error bounds, asymptotic expressions for the error as
the number of interpolation points becomes large, and convergence properties
of the spline interpolants Sx and their derivatives [Sec. 6-11].

Basic for our analysis ofapproximation by periodic spline functions turn out
to be the interpolants bv(t) of the functions exp(27Tivt) (v = 0, 1,2, .. .,n - 1)
Section 5). The piecewise polynomial functions bv(t) with knots at m/n (m = 0,
±1,±2, ...) inherit many of the properties of the functions exp(27Tivt) that they
interpolate. In particular,

bit + lin) = e2rr ,v!nbit),

Ibv(t) I~ 1, etc. Explicit formulas in terms of the Bernoulli functions B2.(t)
(the periodic extension of the Bernoulli polynomial restricted to 0 ~ t ~ 1)
and the Fourier series for the bv(t) are given, and it is shown that they and
their derivatives of order ~ 2r - 1 are orthogonal in the same sense as the
functions exp(27Tivt) (see Section 5). If x(t) has the absolutely convergent
Fourier expansion L IXvexp(27Tivt), then its 2r-spline interpolant on a mesh of
n equidistant points is Sx(t) = S,n x(t) = L IXvbv(t) (Section 7). Making use of
these representations, we find that the remainder x(t) - S,nx(t) is, in the class
of functions x restricted by L IvlP Ixvl < V) for some p, 0 ~p ~ 2r, of order
O(n-P

) uniformly in t, and the sth derivative of this remainder is, for 0 ~ s .;;;p,
of order O(n-P;-S)(o(I) if s=p), (Theorem 7.1). If p=2r, s.;;;2r-l and
x(s)(t) - (S,n x)(S)(t) = 0(n-2r+s), then x(t) is constant. As a by-product of this
error analysis appears a formula for computing the derivative x(2r) as the
limit of a remainder. Indeed

x(2r)(0) = Orlimn2r[x(1/2n) - S,n x(1/2n)],

where Or is a simple numerical factor (Equation 7.23). The root mean-square

error U~I Ix(S)(t) - (S,n x)(S)(tWdt) 1{2 is, in the class offunctions x restricted by

L Ivl 2P IIXvl 2 < V) for some p, 1- < p .;;; 2r, of order O(n-P+S
) for s < p (Theorem

8.1). If p = 2r and

(j~1 lx(s)(t) - (S,n x)(Sl(tWdt) 1/2 = 0(n-2r+s) for some s, 0.;;; s.;;; 2r - I,

then x(t) is constant. If p = r, that is, if we deal with the class of functions

with an upper bound on fol
Ix(r)(tWdt given, then S,n x(t) is the best estimation

of x(t) [see introductory remark], and

fol
Ix(r)(t) - (S,n x)(r)(t)J2 dt = 0(1) as 12 -+ 00

(Theorem 8.2). From the order of convergence of the spline approximations
Srnx to x one can infer smoothness properties of the function. Thus, if



28 MICHAEL GOLOMB

(2.1)

(JOl Ix(t) - S/x(tWdt) 1'2 = O(n-q
) for some q> 1, then L ivl2p !-:xvI 2< 0)

for the largest integer p smaller than q (Theorem 8.3).
Uniform approximation in the class of functions x restricted by

L Ivl 2p lo:vl 2 < oc: is slightly less accurate than mean-square approximation.
In this case,

IX(Sl(t) - (S/ x)(S)(t)1 = O(n-P+s +1i2) for s < P - t

(Theorem 9.1). That this is the precise order of error is also proved. This is
done in connection with the problem to determine, for the functionals u
mentioned above, the maximum deviation of u(x) from its median value
u(Srn x) in the class of periodic functions x with x(o) , x(lln), ... , x(l - lin), and

"Iabound on Jo Ix(r)(tWdt given. For example, it is proved that limnr- 3 ;2

sup Ix'(O) I, where the supremum is taken over the class of periodic functions x

with x(O) = x(lln) = ... = x(I - lin) = °and fol
Ix(r)(tWdt,;;; 1, exists and is

positive, and its value is determined (Theorem 11.2). Similar results are
derived for the interpolation, quadrature, and Fourier coefficient functionals
(Section 11).

2. THE CARDINAL INTERPOLANTS

Let go, gl' ..., gn-I be n> 1 given (real or complex) numbers. We wish to
construct the 2r-spline (r a fixed positive integer) set) = s/(t) = s/(t; g) of
period 1 with knots [discontinuities of the (2r - I)st derivative] at the points
0, IIln, ±2In, ..., which takes on the value gv at the point vln, v = 0, 1, ... ,
n - 1. Thus we require

(i) s E ee2r-2

(ii) set + 1) = set), -x; < t < x

(iii) S(2r)(t) = 0, t =f 0, =I/n, ±2In, ...

(iv) s(vln) = gv, v = 0,1, ..., n - 1.

The existence and uniqueness of the function s satisfying conditions (2.1)
follows from the fact that the problem of minimizing the integral

(2.2)

among the functions x E '6'r_1 of period 1 for which x(vln) = gv, v = 0, 1, ... ,
n - 1, has exactly one solution, x = s (see [1]).

We expand s(t) first with respect to the basis formed by the functions

I,B2r(t-v!n) v=O,I, ...,n-1. (2.3)
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Here B2r(t) is the Bernoulli function of period 1 which is the periodic extension
of the Bernoulli polynomial B2r(t) restricted to the interval 0 ~ t ~ 1. Thus,
(see [4])

o~ t~ 1

(2.4)
-ex; < t < 00,

where Bp is the pth Bernoulli number, Bp= Bp(O) [in particular, B2P+ I = 0 for
p = 1,2, ...]. Since Bit) = (-1)P Bil - t) and B~+I(t) = (p + I)Bit) (p = 0,
1,2, o ••), it follows that B2r is an even function in '??2r-2, B~;r+l)(t) = 0 for
t =/= 0, :J::1, ±2, 000' and

B~;r-l)(O+) - 8~;r-1)(O-) = -(2r)!. (2.5)

We also mention the useful identity (see [4])

(2.6)

(2.8)

(2.7)

These properties of B2r are evident from the Fourier expansion (see [4]),
which might serve for the definition of 82r :

B ()=(-1)r-l(2r)!2~cos21Tkt
2r t (21T)2r L k2r

k~1

= (-l)r-l(2r)!"",' e21T~
(21T)2r L k 2r '

k

Here and in the following Lk' stands for liml--->,,,,(Lk~l,.. "I + Lk~-l, .. " -I)'
The following expression of B2r(t) in powers of tel - t) is well suited for

computation (see [4])
r

B2r(t) = (-1)' 2: Br,At(l - tWo
p~o

The coefficients involved are obtained recursively from

Br,o = (-1)' B2r

p(p+ I)Br,p+I =2p(2p-l)Br,p-2p(2p-l)Br-I,p_I' (2.9)

Particular values are BI,I = 1, Br,l = 0 for r > 1, Br,r = 1.
To obtain the spline function set) defined by conditions (2.1) we set

n-I

set) = 7] + 2: 7]" B2r(t - vjn)
"~o

where the coefficients 7], 7]0' 0'0' 7]n-1 are determined so that
n-I

2: 7]" = 0
v~o

(2.10)

(2.11 )
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sevin) = f, v=O,I, ... ,n-1. (2.12)

Condition (2.11) implies S(2rJ(t) = (2r)! ~ Y)v = °for t 7" 0, ±l, ==2, .... Thus
if (2.11) and (2.12) are satisfied, then s is the desired spline interpolant.

If we substitute t = fL!fl in (2.10), sum over fL = 0, I . ... ,11 - I and use (2.6)
[with t = 0], we obtain on account of (2. I I) and (2.12)

n-1 n-I

L g" = flY) + 1I
1
-

2r B2r L Y)" ~c flY);
p.~O ,·~o

thus
n-I

TJ = (Ijn) ~ gw
p.~O

The interpolation conditions (2.12) now give

(2.13)

n-l

L a V - J1 Y)J1 = g,. - Y)
p.~O

where we have set am = a~. m:

v=O,I, ...,n-1

m = 0,±1,±2, ....

(2.14)

(2. I5)

The matrix of the linear system (2.14) is a circulant, its n2 elements are replica
ofao, aI, ... , an /2 since am=a_m, am-,-n=am (m=0.1,2, ...). These numbers
can be calculated by the use of (2.8),

r

a~.m=(-IY L Br ,p mP(n-m)P/n2P.
P~O

The calculations can be reduced by making use of the obvious relation

(2.16)

k = 1,2, ....

The inverse of the matrix {av_p.} is also a circulant, which we denote as {Pv-p.}'
Again we have Pm = P-m, Pm-i-II = Pm, so that the n2elements of {Pv-p.} are replica
ofPo, PI> ... , Pn/2' To calculate these numbers, we first observe that the n-vectors

v=O,I, ... ,fl-1 (2.17)

are eigenvectors of the matrix {av_p.}, and the corresponding eigenvalues are
(for simplicity we assume n is even)

n-I
Av= L amE;:'v

m-O

= ao + 2[al cos2rrvln + a2 cos4rrv!n + ...

+ an/2-I cos 2rr(n12 - I) v!n] + (-I)" an!2' (2.18)
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Clearly Av = A.-v. Using Fourier series (2.7), we find the following expression
for Av :

co
Av=(_l)r-I(2r)!n-2r+I(27Tt2r .L (k-v/n)-2r

k=-ce
(2.19)

(for v = 0 the term with k = 0 is to be omitted in the sum). Observing that the
vectors (2.17) satisfy the orthogonality relations

.-1

.L E':P- E;m
v

= nD/-,. v,
m=O

we find for the pv the explicit expression
.-1

np = " ,\-1 Emv
v L m n

m=O

= A0
1 + 2[,\(1 cos 27Tv!n + A2"1 cos 47Tvjn + ...

+ ,\;/k-I cos 27T(nI2 - 1) v/n] + (-1)" ,\;/k. (2.20)

As with the u's the calculation of the p's is simplified by making use of the
relations

k= 1,2, .... (2.20a)

v=O,I, ... ,n-l.

With the numbers p found, we have the explicit inversion of system (2.14)
.-1

TJv = .L p,.-,lgll - TJ)
p-=o

Since by (2.6), (2.15), (2.18), (2.20)

.-1 /.-1
,.~o Pv = 1 v~ouv

(2.21)
we have more explicitly

.-1 .-1

TJv = .L PV-Il gil - n2r- 1 TJIB2" TJ = (lin) .L gw (2.22)
~o P-~

This completes the calculation of the interpolating spline s.
If we let Sv = s~. v (v = 0, 1, .. .,n - 1) be the cardinal interpolating spline

satisfying
sv(/Lln) = Dil .I' /L, v = 0,1, ... , n - 1 (2.23)

in place of (2.I(iv», then by (2.22) the corresponding coefficients are
TJP- = P"-P- - n2r- 1TJ IB2" TJ = n- 1; hence

.-1

sit) = lin + L (Pv-/-, - n2r-2IB2r)B2r(t - /LIn)
p-=o

.-1

=(l!n)[I-B2,(nt)!B2r]+ L PV-Il B2r(t-/L!n).
p-=o

(2.24)
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As one would expect, the s" can be expressed as translates of the one even
function so:

v = 0, I, ... ,11 - 1

.-1

so{t) = 1:'1/ + L (PI' -112r-2/B2r)82r(t -'- v/l1)
"~o

11-1

= (1/I1)[1 - 8 2r(nt)/B2r ]+ L p,,82r(t -i- vil1)·
v~o

(2.25)

3. INTERPOLATION, DIFFERENTIATION, QUADRATURE

a. If x(t) is the function to be interpolated, with gv = x(vjn) given (v = 0,
1, ... ,11 - 1), the spline interpolation of x(t) at t = r is denoted by Sx(r), and
is given by

n-I
Sx(r) = L x(vjn)so(r - vjn)

v~o

(3.1)

where So is given in (2.25). S = Sr" is to be considered a linear operator, trans
forming general periodic functions into periodic 21'-splines.

b. The spline derivative of x(t) at t = r is given by

n-I
DSx(r) = (Sx)'(r) = L x(vjn) so'(r - vfn),

v~o

where so' is obtained from (2.25):

n-I
so'(t) = 2,. L (p" -n2r-2jB2r)82r-l(t + v/n)

v~o

(3.2)

= 21' [-82r-l(nt)jB2r +:~ PI' 8 2r- l (t + v/n)l (3.3)

If r is one of the interpolation points, say r = 0, then (3.2) gives the following
approximation to x'(O):

n-I n-I

(Sx)'(O) = L 8"x(vjn), 8,. = 21' L p,,+/-<B2r- I (J-t(n). (3.4)
v~o ,.,.~o

c. The spline quadrature value of ,C x(t)dt is given by

CSx(t) dt = nf x(v(n) [. so(t - v(n) dt (3.5)
• 1'-0'

where
~T n-l

J so(t - v(n)dt = 2r(n -i- (21' -'-1)-1 L (P"-fL - n2r- 2
_T ,.,.~o

(B2r) [82r+ 1(r + J-t(n) + 82r_ l (r - J-t(n)]. (3.6)
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For the special case T = ljn we obtain the quadrature formula

f
lln 71-1

Sx(t)dt= ~ levx(vjn),
-lIn v=o

71-1

lev = 2n-2+ (2r + 1)-1 ~ (PV+/l-I - PV+/l+I)B2r+I(/Ljn). (3.7)
/-<=0

4. FOURIER COEffiCIENTS

The spline approximation of the Fourier coefficient fol
x(t)exp(-27Tikt)dt

(k = 0,±1,±2, ...) is

f' Sx(t) e-27Tlkt dt = n::f x(vjn) f I so{t - vjn) e-27Tlkt dt
Jo v=o Jo

71-1' I
= ~ E;;kVx(vjn) fo so{t)e-27T'ktdt. (4.1)

v-o
We put

fol
so(t) e-27Tlkt dt = fol

so(t) e27Tlkt dt = fol
so(t) cos 27Tkt dt (4.2)

=so(k) k = 0,1,2, ...

and proceed to determine these coefficients. By (2.7), for k =I-°
fol B2r(t + vjn) e-27Tlkt dt = E:v fol

B2r{t) e-27Tlkt dt

= (-l)r-I(2r)!(27Tk)-2r e:v;
hence by (2.25)

71-1
so(k) = (-l)r-I(2r)! (27Tk)-2r ~ (Pv - n2r-2jB2r) e:v. (4.3)

v=o
By the definition of Pv, -'v and En we have

71-1

~ Pve:v=-,;I k=0,1,2, ...
v-o

71-1

~ E:v
= n if k ==°(modn)

v=o

(4.4)

(4.6)

k ~O(modn)

k == o(modn), k =I- 0

k=O.

= 0 if k ~ o(mod n) (4.5)

where we have set -'k+n = -'71 (k = 0, 1,2, ...). Since n2r-IjB2r = -'0 1 [see (2.21)],
(4.2), (4.3) and (4.4) give

so(k) = (-I)r-l(2r)! (27Tk)-2r Ak"1

=0

These are the Fourier coefficients of so'
3
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If (4.6) is used in (4.1), one obtains the following explicit formulas for the
spline approximation of the Fourier coefficients of the function x(t):

I
I n-1

SX(t) e-217ikt dt = (lIn) 2: x(vln) k = 0
o V~O

=0 k == o(mod n), k -:f. 0 (4.7)

n-I

=(-I)r-l(2r)I(27Tk)-2r Ak'1 L x(vln)E;;kV, k¢O(modn).
•'=0

If we use the expression (2.19) for Ak in (4.7), we obtain the following simple
formula for the Fourier coefficients:

fol
Sx(t) e-2nikt dt = (ljn) ~~~ x(vjn) E;;kV

/ l=t (I -lnjk)-2r, k i: O(mod 11).

(4.8)
It is interesting to observe that the commonly used approximation

n-l

(l/n) L x(v/n) E;kV
v=o

(which results from the trapezoidal rule) turns out to be a biased estimate in

the class of functions x with a known bound on r, I !x(r)(t)j 2dt, the bias factor
.0

:Sl (l-ln/k)-2r being the larger, if Ikl < n/2, the smaller r is. From (4.7) it
also follows that if k l == k2 "I- 0 (modn), then

CSx(t)e-217ikltdt-';-- CSx(t)e-21rik2tdt=k~r-,;--k~r. (4.9)
.0 .0

The trapezoidal rule gives the same value for the kIth and k2th Fourier
coefficients, which is clearly useless. The rate of decrease expressed in (4.9) is

the expected one for the class of functions x with a bound on J; Ix(r)(t)jldt.

In [10], Collatz and Quade obtain the same result for the Fourier coefficients,
but with a different expression for the bias factor.

5. THE EXPONENTIAL INTERPOLANTS

We now introduce the important functions bv = b~.v (II = O,:i:1,=2, ...)
defined as

bit) = I v ~ O(modn)
n-I

bit) = ),;1 L E~m 1J2r(t - min)
m=O

v¢. O(modn).

(5.1)
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Clearly, b.+n= bv and b_v = bv. The bv are 2r-splines since

n-I
2: E~m = 0 if v ~ o(mod n).
m~O

They have the fundamental property

b.(t + lin) = En· b.(t) = e21Tlv/n b.(t)

Since bv(O) = 1, it follows from (5.2) that

v = O,±I,±2, .... (5.2)

b.(mln) = E~m = e21TI.m/n v=O,I, ...,n-1. (5.3)

Thus b.(t) is the 2r-spline interpolant of the function exp(21Tivt) [and also of
exp[21Ti(v+kn)t], k=O,±I,±2,... ], and Reb.(t), Imbv(t) interpolate
COS21Tvt, sin21Tvt, respectively. Therefore, also,

n-I
b.(t) = L E~m so(t - min)

m-O
v = O,±I,±2, .... (5.4)

Conversely, So may be expressed in terms of bo, ... , bn_ l • By (5.4)
n-I

so(t) = (lIn) 2: b.(t).
.=0

(5.5)

Hence the spline interpolant Sx may be expressed in terms of the b•. By (5.2)
and (5.5)

n-I
so(t - min) = (lin) L E;;·mb.(t)

.=0
and this together with (3.1) gives

n-I
Sx(t) = 2: tb.(t)

.-0
n-I n-I

t = (lIn) 2: E;;I-'· ~p. = (lIn) 2: E;;I-'· x(f-tln). (5.6)
I-'~O I-'~O

Formula (5.6) shows that x(t) has the same spline interpolant as the trigono
metric polynomial

n-I n-l

L t"e27rI•t, t. = (lIn) L E;;P.· x(f-tln) (5.7)
.~o 1-'=0

[independent of r]. (5.7) is clearly an interpolating polynomial of x(t).
The Fourier expansion of b. is easily obtained from (2.7), using (2.19):

(-1)r-I(2r)' L,[n-I ]e27rlktb (t) - ." €(.-klm
• - (21T)2r A. m-=o n pr

k

= (-I)'-1(2r)! ~ e27r1(.-knlt
(21T)2r A. 7 (v - kn)2r (5.8)

= 2: (k - vln)-2r e21TH.-knlt/2: (k - v!n)-2r, v ~ 0 (mod n).
k k
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v"ot °(mod n). (5.12)

We also record the Fourier expansion ofthederivativesb~s), s = 1,2, ..., 2r - 1:

b~S~(t) = (-21Tin)S 2: (k - v/n)-2r+s e2r.i(V-kn)t/2: (k - v/n)-2r
k k

v"otO(modn);s=0,1, ,2r-1. (5.9)

The spline functions bv(t) (v = 0, 1, ,n - I) and their derivatives b~S)(t)

are orthogonal just like the functions exp (21Tivt) which they interpolate. 3

Indeed, by (5.9)

fol
b~)(t)b~S)(t)dt = ° if p."ot v (mod n), s = 0, I, .. .,2r - 1. (5.10)

For the normalization factor we have by (5.9) and (2.19)

fol
Ib~S)(t )1 2 dt = (21TV)2s (I + f' (I - kn/v)-4r+2s) / ( I + f' (1 _ kn/v)-2r)

2

v"ot O(modn); s = 0, I, .. .,2r - 1. (5.Il)

For s = r, (5.11) reduces to

fol
Ib~r)(tW dt = (21TV)2r/ f (1 - kn/v)-2r

Since it is known that, among all the functions in the class iFr (periodic
functions with square-integrable rth derivatives, see Section 6) which inter
polate a function xo, the 2n-spline interpolant SXo attains the minimal value

of fol
Ix(r)(t)1 2dt, we conclude:

For no function x in iFrfor which x(k/n) = e217ivkin (k = 0,±1,±2, ...) is the

value of fol
Ix(r)(tWdt smaller than the number (5.12), and only for x = bv is

this value attained.

By (5.9), we have for the values of the derivatives at the knots

b~S)(m/n) = #~S)(21Tiv)S e21Tivmin

#~s) = #~~)v = (1 + f' (1 - kn/v)-2r+s) (1 + f' (1- kn/v)-2r) -I (5.13)

v"ot O(modn); s = 0,1, ..., 2r - 2.

Thus, b~s)(t) interpolates the sth derivative of #~S)exp(21Tivt)at the knots min,
and ReW)(t), Imb~S)(t) interpolate the sth derivatives of #~S)COS21TVt,

3 The orthogonality property of periodic splines considered in [5] concerns splines on
imbedded meshes, while (5.10) expresses orthogonality of splines interpolating orthogonal
functions on the same mesh.
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fJ~l) sin21Tvt. Since b~21) is a 2(r - s)-spline, and since the interpolating spline is
unique, we conclude

b~:t)(t) = fJ~:t) br-s. v(t), v ;t 0 (mod n); s = 1,2, ..., r - 1.

We have this relation for the derivatives of even order only because we have
restricted ourselves only to splines of even order.

To calculate the piecewise constant b~2r-')(t), we use (5.9) halfway between
consecutive knots. We obtain

b~2r-I)(m+ tIn) = fJ~2r-I)(21Tiv)2r-l e217 /V(m+1/2)/n

fJ~2r-l) = fJ~:~-l) = (1 + :t' (-l)k(l- knlv)-') (1 + :t' (1- knlvt2rf' (5.14)

v;t o(mod n).

Thus, b:?r-')(t) interpolates the (2r - l)th derivative of fJ~2r-')exp(21Tivt)at
the points t = (m + t)ln. The piecewise constant b~2r-I)(t) may be used to
compute bv(t).

Because of the periodicity property (5.2), bv(t) need be computed only for
0< t < lin. Actually, the interval 0 < t < 1/2n is sufficient since we also have
the symmetry property

bv(1/2n + t) = E/ bv(1/2n - t), (5.15)

which follows directly from (5.1).

6. BOUNDS AND ApPROXIMATION ERRORS OF THE b"

From the Fourier expansion (5.8) one obtains immediately

LEMMA 6.1
Ibv(t)1 ,;;; 1, -00 < t < 00; v =0,±1,±2, .... (6.1)

One also sees that if v ;t 0 (modn), then Ibv(t) I= 1 if and only if t = min
(m = 0,±1,±2, ...), that is, at the knots of by. For the derivatives W) we do
not have the least upper bounds; however by (5.9)

Ib~')(t)1 ,;;; fJ~W21TV)S

fJ~~=(1 +f' II-knlvl-2r+s)/(1 + t' II-knlvl-2r) (6.2)

v;t O(modn); s = 0, I, .. .,2r - 2.

We write fJW as a fraction whose denominator is
~ 00

1+ L (l + knlv)-2r+ (nlv - 1)-2r + L (knlv - 1)-2r
k-I k=2
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and whose numerator consists of the same terms, with the exponent -2r
replaced by -2r + s. To estimate fJ~~~ for 1 « v « n - 1 we use the inequalities

(6.3)
00 roo2: (kn/v - 1)-2r+s < ,I (xn/v - 1)-2r+s dx

k-2: .1

= (v/n)2r-s(1 - v/n)-2r+s+I(2r - s - 1)-1.
Then

fJ(s)
v*1+(~) (2r-s-1)-1 + (~rr-s (1-~) -2r+.+ (~rr-s (1-~) -2r+s+I(2r_s_1)-1

< 1+ (~rr (1 _~) 2.

If 2v « n, then since (v/n)2r-'(1 - v/n)-2r+. « 1,

fJ~'J < 1 + (v/n)(2r - s _1)-1 + 1 +(1- v/n)(2r - s - 1)-1

=2+(2r-s-l)-1

<3.

If 2v> n, then (v/n)2r-'(1- v!n)-2r+. « (v/n)2r(1 - v/nt2r, while 2r - s - 1
+ v/n > 2r - s - v/n. Making use of the inequality (AI + B1)/(A2 --i- B2)
« BdB2 if 0 < AI « A2, 0 < B2« B I , (6.3) gives

f3~'J « (2r - s - 1 +- v/n)(2r - s - It I

= I + (v!n)(2r - s - 1)-1

<2.

Thus, we have shown

f3~'J « 3, v = 1, . .. ,n - 1; s = 0,1, ... , 2r - 2. (6.4)

To estimate b~2r-I)(t), we use (5.14):

Ib~2,-I)(t)1 « f3~f-I)(27TV)2r-1

fJ~f-J) = 11 + 2:' (-I)k(1 - kn/v)-II/Il + 2:' (1 - kn!v)- 2r l (6.5)
k k

Then, for 1 « v « n - 1,

fJ~f-l) = II -+- 2(v2!n2) i (_I)k-l(P - v2/n2)-II/11 + L' (1- kn!JI)-2r l·
k~l k
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The sum in the numerator is alternating and has decreasing terms. The sum in
the denominator is larger than

(1- n/v)-2r + (1 + n/v)-2r

= (v2/n2)'(1- v2/n2)-2r[l- v/n)2r + (1 + v/n)2r]

> 2(v2/n2)'(1- v2/n2)-2r.
Thus,

(2r-1) 1+2(v2/n2)(1 - v2/n2)-1
flv* < 1+ 2(v2/n2)'(l- v2/n2)-2r

and if 2v2< n2, then since (v2/n2)(l- v2/n2t l < 1, fl~f-ll < 1 + 2 = 3. If
2v2> n2, then

(v2/n2)(1 - v2/n2)-1 < (v2/n 2)'(l - v2/n2)-r < (v 2/n 2Y(l - v2/n2t 2r,

hence fl~,f-I l < 1. Thus, we have shown

fl(2r-1) < 3v* , v= 1, ...,n-1. (6.6)

We have proved IW)(t) I< 3(27TV)' for v = 1, 2, . 00' n - 1. Since bv+n = bv
and b_IJ = bv, this upper bound is valid for all v.

In summary, we have

LEMMA 6.2

IW)(t)! < 3(27TV)', -00 < t < 00; v = 0, ±1,±2, ... ; s = 1, ..., 2r - 1. (6.7)

We now investigate the error in approximating (27Tiv)'exp(27Tivt) by Wl(t).
By (5.9)

I(27Tiv)' e2rrivl - Wl(t)1 < S~'l(27TV)S

S~'l = 2:' 11 - kn/vj-2r+, + 2:' II - kn/vj-2r (6.8)
k k

v'¥-°(mod n); s = 0, 1, ..., 2r - 2.

We write, assuming 1 < v < n - 1,

S~S) = (n/v - 1)-2r+s + (n/v + 1)-2r+s + (n/v - 1)-2r + (n/v + 1)-2r

<Xl

+ 2: [(kn/v - 1)-2r+, + (kn/v + 1)-2r+, + (kn/v - 1)-2r + (kn/v + 1)-2r]
k~2

and apply inequalities (6.3):

S~S) < n-2r+'[(1 - v/n)-2r+s + (l + v/n)-2r+s + (1 - v/n)-2r + (1 + v/n)-2r]

+ (2r - s - 1)-1 v2r- s[(l - v/n)-2r+s+l + (l + v/n)-2r+s+l]

+ (2r - 1)-1(v/n)2r[(1 - v/n)-2r+1 + (1 + v/n)-2r+I].
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For 21' .;;; n, this gives

S:.s) .;;; n-2'+S [2 2.-s+ I + 22• + I

+ v2,-s(l + 22.-s - l ) + 2-s v2,-s(l + 22.- 1)]

from which one concludes easily

2 .;;; 21' .;;; n; s = 0, 1, ... , 2r - 2. (6.9)

Thus, we have shown

I(21Tiv)S e217h'l _ b~S)(t)1 .;;; 22'+2(21T)S 1'2. ns - 2•

1'= 1, ... , [nI2]; s = 0,1, ..., 2r - 2.

For 21' > n we make use of (6.7) and obtain

I(21Tiv)' e217i ,·t - b~S)(t)1 .;;; I(21Tiv)S e217IVII + IW)(t)1

.;;; (21TV)' + 3(21TV)S = 4(21T)S(vln)'-2. v2•ns- 2•

(6.10)

(6.11)

1'= [nI2] + 1, ..., n - I; s = 0,1, ..., 2r - 1.

For the case of s = 2r - 1 we use (5.14), according to which, for min < t <
(m + l)ln

By (5.14), for 1 .;;; 21'';;; n

1,8~2,-1) -11 .;;; IL' (-l)k(l - knlv)-ll

.;;; 2(v21n2)(l _ v2In2)-1

.;;; (4/3)(vln),

while the mean-value theorem gives

le217IVI - e217IV(m+1/2)!nl .;;; 21Tvln.
We have shown

1(21Tiv)2'-1 e217ivl _ b~2,-1)(t)l.;;; 8(21T)2'-1 v2'n- 1

1'= 1, ..., [nI2]. (6.12)

For 21' > n we use (6.11) with s = 2r - 1, and we find the same inequality as
(6.12). Clearly, the same inequalities are obtained for negative v. Altogether,
we have proved:



LEMMA 6.3
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I(21Tiv)S e2,,'vr - Wl(t)1 ,,;;;; 22r+2(21T)S V 2r ns- 2r

v = O,±I, .. .,±(n - I); s = 0, I, .. .,2r - 1.
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(6.13)

It is seen that, for fixed v, the error in approximating (21Tiv)Sexp(21Tivt) by
b~Sl(t) is uniformly of order no larger than n-2r+s for s = 0, I, ... , 2r - 1. That
it is exactly of this order is seen by taking t = °if s is even, s;;;. 2. Then (5.9)
gives

lim n2r-s [(21Tiv)S - b~'l(O)]
n~",

'"
= -2(21Ti)" v2r L k-2r+s

k=1
(6.14)

= -2is(21T)2r v2r lB2r- s l/(2r - s)! s = 2,4, ..., 2r - 2.

For s = 0, the error is of the exact order n-2r. This is seen by taking t = 1/2n
in (5.8). We obtain

lim n2r [e,,'v/n - bv(I/2n)]
~'"

'"= 2v2r L (2k - 1)-2r
k=1

(6.15)

(6.17)

= v2r(22r+1 - 2)1T2r IB2r l/(2r)!.

Thus, the error in interpolating by periodic 2r-splines, is of order n-2r even for
the function cos21Tt.

The order n-2r+s is also obtained for the mean-square error. Indeed, if the
Parseval identity is applied to (5.9), one obtains

{f: 1(21Tiv)"e2,,'vr - Wl (t)1 2dt} 1/2

= (21T)'v2r n-2r+•. {t' (k - v/n)-4r+2' + (v/n)2S[t' (k - v/n)-2rn1/2/ (6.16)

{I + (v/n)2r f' (k - v/n)-2r} v it°(mod n); s = 0, I, . .. ,2r - I

and from this we get

~~ n2r- s {f: 1(21Tiv)Se2
"i

vr - Wl(tW dtr2

= (21T)' v2r{t' k-4r+2Sr2

s = 0, I, ..., 2r - 1.

We now establish a result that is the analog of Bernstein's inequality on the
derivatives of trigonometric polynomials.
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LEMMA 6.4. For any periodic 2r-spline y with knots at the points min (m = 0,
±1,±2, ...) the inequality

fol
ly(S)(tWdt.-; 3(217'n)2s fol

ly(tWdt

s = 0, 1, ... , 2r - 1; n = 1,2, ... (6.18)
holds.

Proof If we set y = ~~:b TJvbv, then y(S) = ~~:b TJvb~S), and because of the
orthogonality of the b~S), we have

(1 n-I (I
)0 ly(S)(t)1 2dt = v~ITJ,.12 Jo Ib~S)(tWdt.

By (S.II), for v = I, 2, ... , n - 1,

CIW)(t)1 2dt = (217'n)2s L (k -lIlnt4r+2s/(L (k - vln)-2r)2;
.0 k k

hence by (6.4) and (6.6)

f: IW)(tWdt/f: IbvCtWdt

= (217'V)2S L (1 - knlv)-4r+2s/ L (1 - knlv)-4r < 3(217'V)2s.
k k

Hence, (6.19) yields

fol
ly(S)(tWdt.-; 3:~ (217'V)2SITJvI 2 fol

Ibv(tWdt

n-I I

.-; 3(217'n)2s L ITJvl 2 fo Ibv(t)i2dt
v=o

= 3(217'n)2S fol
ly(t)i2dt

(6.19)

(6.20)

and the lemma is proved.
Since yIp) (p = 1, .. .,2r - 2) is itself a periodic (2r - p)-spline with knots at

the points min [the fact that 2r - p may be odd does not affect the argument],
we infer from (6.18) the more general inequality

fol
ly(S)(t)i2dt.-;3(217'n)2S-2P f: ly(Pl(t)i2dt, 0.-;p.-;s.-;2r-1. (6.21)

We also consider the approximation of f,. exp(217'ivt)dt = (1/17'v) sin217'VT

(v = ±1,±2, ...) by f,. bv(t)dt. By (5.8)

I,. b,,(t) dt = (-1/n17') L (k - vln)-2r-1 sin 217'(V - kn) TIL (k - v/n)-2r
-,. k k

V1' o(mod n). (6.22)
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Therefore

(v)2r""", ( v)-2r . .=1T-I n ~ k- n [v- I sm21TvT-(kn-v)-l sm 21T(kn-v)T]
I<

V;P o(mod n). (6.23)

It follows that

/OI1TV) sin 21TVT - fT bit)dtf

< 1T-Iv2r-1n-2r2' [(~) (k - ~r2r-1 + (k - ~r2']
I<

/[1 + (~)2r 2' (k -~) -2r] , V ;p 0 (mod n). (6.24)
I<

For T = lIn we obtain the asymptotic evaluation

lim n2r
+1[(II1Tv) sin (21Tvln) - fl/ft

bit) dt]
n->", -lin

<Xl

= 4v2r L k-2r = 4(21TV)2r IB2r l/(2r)!,
I<~I

v;p o(mod n). (6.25)

7. UNIFORM ApPROXIMATION OF (jp-FUNCTIONS

From here on II II will denote the £'",-norm, I;xll = SUPt Ix(t)l. We assume
first that x is a trigonometric polynomial

N
x(t) = L ocve2111 ,·t.

l'=-N
(7.1)

Then since S is a linear operator, the interpolating spline Sx is given by

N

Sx(t) = L ocvbv(t)·
v=-N

(7.2)

It follows that the bounds derived for the error exp(21Tivt) - b~(t) in Section 6
readily apply to x - Sx. Thus, by Lemma 6.3, we have

LEMMA 7.1. Ifx is a trigonometric polynomial ofdegree < n - 1, then

s=O,I, ...,2r-1. (7.3)
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Also, by (6.15),

lim n2r [x(1/2n) - S/ x(I/2n)J

N

=(22rtl-2)172r(jB2rl/(2r)!) L v2r oc,.
,'~-N

(7.4)

= (-1)'2(1- 2-2rHIB2r l/(2r)!)x(2r)(0).

This leads to a formula for x(2r)(0):

X(2r)(o) = (-1)'[(2r)!/2(1- 2-2r)!B2r IJ lim n2r [x(l/2n) - Srn x(l/2n)]. (7.5)
n-<Xl

Another such formula follows from (6.14)

x(2r)(o) = ;2r-s-I[(2r - s)!/2I B2r-sll lim n2r- s[x(s)(0) - (Srn x)(S)(O)],
n-<Xl

S = 2,4, ..., 2r - 2. (7.6)

We remark that since bv+kn = bv (k = ±1,±2, ...), (7.2) may be written as

n-l A

Sx(t) = L ~vb,,(t)
v-O

t = L OCv+kn'
IV+knl "'N

(7.7)

Comparison of (7.7) with (5.6) results in well-known formulas for the Fourier
coefficients of a trigonometric polynomial in terms of the values on a uniform
mesh. By Lemma 6.1 we conclude

n-I

IISxl1 < 2: ItI
v-O

Similarly, we have for the derivatives J)S Sx:

(7.8)

and by Lemma 6.2,
n-I

IlLY Sxll.;;; 3(217)S L vSltl
v=O

N

< 3 L (217lvJ)slocv l,
v=-N

s = 0,1, .. .,2r-l

s = 0, 1, ..., 2r - 1.

(7.9)

(7.10)

We extend some ofthese results to general functions. We consider the linear
space of functions

00

x(t) = L ocv e2T!iVI

v=- 00

(7.11)
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with absolutely convergent Fourier series. We define:2::v lavl as the norm of x,
and obtain a Banach space 0:0 (isomorphic to the familiar space It). Since the
trigonometric polynomials are dense in this space, (7.8) shows that S = Srn

is a bounded operator from 0:0 to rf (with uniform norm on x); moreover, the
bound is uniform with respect to nand r. If XN(t) denotes the partial sum of
(7.11) from -Nto N, then XN -* x in the sense of (yo as N -* ex;. Therefore, by
(7.2) and (7.7)

Srnx(t) = lim S/ XN(t)
N---+X!

11=-00

(7.12)

where the limit of the infinite sum is (7.12) is uniform with respect to t, n,
and r.

If x has a Fourier expansion (7.11) with :2::v IvlPlavl < ex; for some p,
o<.p <. 2r (p need not be an integer), then we may consider:2::v IvlP [a,.1 as the
norm of x (for p > 0 this is a true norm only if functions differing by a constant
are identified), and this results again in a Banach space (yp. We set

00

IlxlljJp = 2: (21TlvJ)Plavl,
v=-oo

(7.13)

Clearly, ifp is an integer, then Ilxl:jJ. = Ilx(P)lljJo' On this space not only S, but
DS, ..., DP S as well, are bounded transformations to rf, as we see from (7.10).
We may also say that S is a bounded transformation from (Ys to 'fls (with
uniform norm on the sth derivative of x).

The results of (7.8) and (7.10) are summarized in

LEMMA 7.2

XE (Ys; s=O, 1, ...,2r-1.

X E (Yo (7.14a)

(7.14b)

It now follows that for x E (Yp (0 <.p <. 2r)

v=-co

s=O,l, ... ,[p] (7.15)

where the limit of the infinite sum in (7.15) is uniform with respect to t, n,
and r.
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The following error estimates are based on Lemmas 7.1 and 7.2. We obtain
from these, for x E ~P (0 <,p <,2r)

l:x(S) - DS Sxll <, l[x~S) - Ds SX..... !: + !~X(S) - X~):: + r:Ds Sx - DS SXs!1

<,2262(27r)'ns-2r L V
2r [':X v l+ L (27T[vl)Sjoc,,[

ll-'I-:::;;s Ivj>s

+ 3 L (27TjVl)sloc,,1
Jvl>N

<,22r+2(27T)S{N2r-pnS-2r L IvlPlocvl + NS-P L IvIPI:xv"
I.. I<:;.V I"I>N J

s = 0, I, ... , [p]. (7.16)

For s = p <, 2r - I, we take N = [n t i2] in (7.16) and obtain

Ilx(P)-DPSx l<,2 2r ,2(27T)p{np'2-r L Iv[Ploc"I+ L IIJ1Pjo:"I}. (7.17)
I"I<:;N 11'1>'"

Clearly, (7.17) yields
lix(P) - DP Sr" xii = 0(1) as n --+ 00,

XE ~P' p = 0, I, ..., 2r - 1. (7.18)

(7.19)

In particular, the spline interpolants Sr" x com'erge to the function x uniformly
if x E ~o (i.e. ~v !ocv I< 00).

If s <P, then we take N = n - 1 in (7.16) and obtain

:[x(s) - DS Sr" x;[ <, 22r+2(27T)S-Pllx!i1\'p nS- P

XE~p, 0<,s<p<,2r.

Thus, xes) is approximated by DS Sr" x with an error of order O(nS-P) in the
class ~P' and an explicit bound on the coefficient of nS

-
P is established.

Remarkable is that if x E ~2" then even the discontinuous (piecewise constant)
D2r-l Sr" x converge to x(2r-l), with an error term of order O(n-I).

For x E ~2" the error in the approximation of xes) is of order O(ns- 2r), just
as for trigonometric polynomials. That the error cannot be of higher order is
clear from the fact that it is of the precise order O(ns- 2r) for x(t) = cos27Tt
[see (6.14)]. Moreover, we can extend (7.4) to the function x in ~2r' We write

n2r [x(I/2n) - Sx(1j2n)] = n2r [xN(1/2n) - Sx",(1/2n)]

+ n2r [(x - xN )(I(2n) - Sex - xN)(I/2n)]. (7.20)
By (7.19) we have

n2r l(x - xN) (1 (2n) - Sr"(x - xN ) (1(2n)1 <, 22r+2(27T)-2rllx - XN,;1\'2r (7.21)

and this can be made arbitrarily small, independent of n, by choosing N
sufficiently large. Thus, (7.20) in conjunction with (7.4) and (7.21) gives

lim n2r[x(1/2n) - Sr" x(1/2n)] = (-1)'2(1 - 2-2r)(IB2r l/(2r)!)x<2r)(0) (7.22)
n-->.,
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for every x ElJ2r' Eq. (7.22) may be considered a formula for x(2r)(0):

x(2r)(0) = (-I)'[(2r)!/2(1- 2-2r)!B2r l] lim n2r [x(1/2n) - Sr" x(1/2n)], x E lJ2r'
n-->oo

(7.23)
In the same way (7.6) is extended, and gives

x(2r)(0) = i 2r-S- 1[(2r - s)!/2IB2r- sl] lim n2r-s[x(S)(0) - DS Srn x(O)],
n-->oo

s = 2,4, .. .,21' - 2, x E lJ2r' (7.24)

From (7.23) we conclude that if x E lJ2r and x(I/2n) - Srn(l/2n) = 0(n-2r) as
n --1>- 00, then x(2r l(0) = O. Using only the sequence n = 2m (m = 0, 1,2, ...), we
may also conclude from (7.23) that if x E lJ2r and I:x - Sn'xii = 0(n-2r) as
n --1>- W, then x(2r l(k' 2-m) = 0 for each In and integer k. Since x(2r) is continuous,
this implies x(2r) = 0, hence x is the constant function. We have proved:

Ifx E lJ2r and Ilx - Sn' xl! = 0(n-2r), then x is constant.
In similar fashion we conclude from (7.24):
If x E lJ2r and liDS x - DS Srn xii = 0(n·-2r) for some s = 0, 1, ... , 21' - 1, then

x is constant.

We summarize several of these results in

THEOREM 7.1. Suppose Srn x(t) is theperiodic 2r-spline(r;;;. 1) that interpolates
the function x(t) at the knots mIn (m = 0,±1,~2, ...). If s is one of the integers
0, 1, ... , 21' - I and if x E lJp for some p, s <, p <, 21', then :Ix(') - (Srnx)(·lli
= O(n-p-i-S) [0(1) ifs = p] as n --1>- 00. Inparticular, ifx E lJ2" then IIx(s) - (Srn x)(')I!
= O(n-2r+s), and if Ilx(') - (Sr" x)(')11 = 0(n-2r+.) for some s, 0 <, s <, 21' - 1, then
x is constant.

The special case p = 21' - 2 (with the weaker hypothesis x E 112r- 2 in place
of x E lJ2r-2 and with a more general sequence of meshes) appears in [5,
Theorem 4]. However, the conclusion there is only x(s) - (Sr" x)(') = 0(1) for
s = 0, 1, . 00' 21' - 2. In the same paper the case p = I' appears (again x E CCr

in place of x E lJ" and a more general sequence of meshes is considered), and
the conclusion is x(s) - (Sr" x)(·) = 0(1) only for s = 0, 1, ..., I' - 1. There are
more precise results in [7], however this source was not available at the time
this article was written. Related results are also found in [10].

8. MEAN-SQUARE ApPROXIMATION OF iYp FUNCTIONS

We now consider functions x(t) with Fourier expansion ~v <Xv exp(27Tivt)
for which

(8.1)
v--oo
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The numberp need not be an integer, but we do assumep > t. We call the space
of these functions if'"p, and provide it with the norm

(8.2a)

which clearlycomes from an inner product. "If/p is a Hilbert space. Inparticular,
if p is an integer, then if/"p is the Sobolev space of periodic functions x that
have derivatives x', x", ... , x(P-I), with X(p-I) absolutely continuous and the
Lebesgue derivative x(p) square-integrable. The norm defined above is also
given by

(8.2b)

ifp is an integer. I bwill denote the 2 2 norm from here on. As before, functions

differing by a constant are identified [or ao = fol
x(t)dt = 0 is assumed for

each x].
Since ~v Ivl 2p lav l2 < w implies

(8.3)

we conclude lJpC "If/pC lJp_1 /2-< for every E > O. It then follows from Theorem
7.1 that ![x(S)-DsSr"xll=O(nS- p+ I/2+<) for XE"If/p and s<p-f, We will
show that this error is actually O(nS

-
P+Ill) and that the root mean-square error

Ilx(s) - DS Sr" xb is O(nS-P).

The function (27TifL)S exp (27TifLt) - b~)(t) is orthogonal (in 2 2) to the
function (27Tiv)S exp (27Tivt) - b~S)(t) if fL, v are integers not congruent (modn).
Therefore, if

x(t) = 2: ave27Th·t
Ivl"N

is a trigonometric polynomial of degree N < [nj2] (if N = nf2, it is assumed
that either aN = 0 or a_N = 0), then by Lemma 6.3

Ilx(S)-DsSr"xll/< 2: lav l2 rll(27Tiv)Se27T1"t-b~S)(t)lldt
Ivl "N Jo

We formulate this as

LEMMA 8.1. If x is a trigonometric polynomial of degree N < [nf2], then

s = 0, 1, ... , 2r - 1. (8.5)
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The order of this error bound is sharp. Indeed, (6.17) gives for any trigono
metric polynomial x

lim n2r-sllx(S) - DS Srnxlb = {2IB4r- 2s l/(4r - 2s)!}1 /21Ixll,v2r'
11"""+00

s = 0,1, ..., 2r - 1. (8.6)

The spline interpolant S may be considered as a linear transformation from
if/"l' to if/"s' We show that this transformation is bounded if s < p -l

LEMMA 8.2. Ifx E if/"p (p > !),

x(t) = L (Xve2nh'f (N~ I),
Ivl;'N

then

IIS,n xii}. -< 9(27T)2s-2P 2n- I (2p - 2s _1)-1 N-2p+2s+lllxll}p, s <p --!-.

(8.7)

(8.8)
<Xl

gV = 2: C(v+km
k~-<Xl

Proof. Since if/"pc!yo for p > -!-, the Fourier series (7.11) of x converges
absolutely, and by (7.9) we have

DS Sx = L tb~S),
v

where we let v range from -[(n - 1)/2] to [n/2] instead of from °to n - 1.
Then, by Lemma 6.2,

liDs Sxlll = L It1211W%2
•

-< 9(27T)2s L v2s le.1 2,
•

s = 0, I, ..., 2r - 1. (8.9)

By the Schwarz inequality,

IL (XV+knI 2 -< L Iv + knl- 2P+2s L Iv + kn\2p-2s!(Xv+knI 2. (8.10)

Using the simple inequality

L Iv + knl-2P+2s -< 2n- I (2p - 2s _1)-1 N-2p+2s+1
Iv+knl ;'N

and the fact that Ivl -< Iv +knl for the values of v employed, we obtain

L v2sIL (Xv+knI 2 -< 2n- 1(2p - 2s-l)-1 N-2p+2s+1 I 1",1 2P I(X/l12. (8.11)
• k /l=-OO

(8.11) together with (8.9) yield (8.7).

Now assume x E if"p (p > -!-) and

XN(t) = L (Xve27FiVf, N -< [n/2].
Ivl""N

4
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Then we obtain, using Lemmas 8.1 and 8.2

l'xIS ) _ Ds Sxll C IlxlS) - DS Sx ·11 + 1'lxIS) - Xls)!I, + !:Ds Sx - DS Sx ,i'" .2"" 11' .~ 2 11' , ~ " ,' .. 2

(8.12)

Therefore, we have proved

jjxls) - Ds Sr" xl12 .;;; (21T)S-P 2P+2[l + 3(2p - 2s - 1)-1/2] nS-Pllxilif'p'

s + t <p.;;; 2r. (8.14)

Thus, xIs) is approximated [in the square-mean] by Ds Sr" x with an error
of order O(nS

- P) in the class if/"p (p > s + t), and an explicit bound on the
coefficient of nS- Pis established. For x E if/'2" the error in the approximation
of xIs) is of order ns- 2r, just as for trigonometric polynomials. That the error
cannot be of higher order is shown by extending equation (8.6) to general
functions in if/'2r' By the triangle inequality we have

!n2r-sllxIS) _ Ds Sxlh - n2r-sllx~) - DS SXNlhl

.;;; n2r-sll(x - x,,") - DS Sex - x N )112' (8.15)
By (8.14) we have

n2r-sil(x - XlV)!S) - DS Sex - xlV)lb .;;; Cilx - x,.,,!i tr2r (8.16)

with a constant C that is independent ofnand N. (8.16) can be made arbitrarily
small by choosing N sufficiently large (independent of n). Thus, with the use
of (8.6) and (8.16), (8.15) yields

limn2r-s'I'lxIS)-DSSnxll ={2IB If(4r-2s)I}1/2 1!xl lr 2 4r-2s , . II .. iF"2r

n-'"
s=0,1, ...,2r-l (8.17)
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for any function x in irzr. In particular, this implies
If x E irzr and lix(s) - (S,")(S) x!!z = o(nS- Zr) for some s = 0, 1, ... , 21' - 1,

then x is constant
We summarize some of these results in

THEOREM 8.1. Suppose S," x(t) is theperiodic 2r-spline (I' ;;;. 1) that interpolates
the function x(t) at the knots min (m = 0, ±1, ±2, ...). If s is one of the integers
0, 1, ... ,21' - 1 and ifx E irpfor some p, s + 1- <p,,;;; 21', then

(fl \I'ZJo Ix(S)(t)-(S,"x)(S)(t)12dt
J

I =O(nS- P) asn--+x.

In particular, ifx E irz" then

(fol Ix(S)(t) - (S," x)(S)(t)12dt} liZ = O(n-zr+S),

and ifthis error is oforder o(n-Zr-S)for some s, 0,,;;; S,,;;; 21' - 1, then x is constant.
Similar results for the cases p = I' and p = 21' have also been obtained (for

more general meshes and more general types of splines) in [8, Theorems 7 and
13]. The conclusion of that paper concerning the case p = 21' is weaker, inas
much as O(nS- Zr) is replaced by O(nS-Zr+I/Z), for s = I' + 1, ... ,21' - 1. Related
results are also found in [7]; however, this source was not available when this
article was written.

The case p = I' deserves special attention. It is well known (see [1], p. 133;
[3] and [5]), that among all functions y E iflr that interpolate a given function
x E irr at the points min (m = 0,±1,±2, ...), the 2r-spline y = S," x attains the

minimal value of jl !y(r)(tWdt and that (I (S,"x)(r)(t)xll)(t)dt=O for any
.0 Jo

function Xo E irr for which xo(mln) = °(m = 0,±1, ...). Therefore,

IIDr S," xliz ,,;;; Ilxll1rr, x E iflr (8.18a)
and

Ilx(r) - Dr S n xii 2 = Ilx11 2 . -liS n x'Z,r 2 iI~ r .i1I"

We may now state

X E "/fIr. (8.18b)

THEOREM 8.2. Suppose Srn x(t) is the periodic 2r-spline(r;;;. 1) that interpolates
thefunction x(t) at the knots min (m = 0,:±:1,::i:2, ...). Ifx E "/fI" then

fo· Ix(r)(1) - (S," xyr)(t)12 dt = fo· Ix(r)(t)12 dt - fol I(S," xyr)(t)!Z dt

=0(1) asn--+oo. (8.19)

Proof By (8.12), using N = [n l /Z] (which is <[nI2] for n;;;. 6), we have, for
n sufficiently large

{ }
I/Z { }I/Z

Ilx(r) - Dr Srn xllz,,;;; 2Zr+Zn-r/Z 2: (21TV)zr lOt:v lz + 2 2: (21TV)Zr lOt:v IZ
Ivl';;N Ivl>N

= 0(1) as n --+ 00. (8.20)
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This result is remarkable since the approximated function is x lr ), which is
an arbitrary function in 2 2 , This case is dealt with in [8, Theorem 7], but the
conclusion there is only i!x(r) - DrS: .<b = 0(1) as n -+ ,x'.

By Theorem 8.1, lix - S: X!'2 = O(n-P
) if x E 1f!"p (p > -!-). The converse of

this statement is not true. However, we now prove a result that is very close to
a converse.

THEOREM 8.3. Suppose S:x is the periodic 2r-spline (r > 1) that interpolates
the square-integrable function x at the points mIn (m = 0,=1,=2, ...), andu: Ix(t) - Sr"x(tWdt} 1/2 = O(n-q

) for some 1 <q <. 2r and n = 1,2,4,8, ....

Then x is equal almost el'erywhere to afunction x* E if/'p, where p is the largest
integer smaller than q.

Proof If

then
(8.21)

n = 1,2,4, .... (8.22)

The function S"x - S2" X is a 2r-spline with knots at the points m/2n (m = 0,
±1,±2, ...). By Lemma 6.4, for s = 0, 1, ... , 2n - 1

li DS S" x - Ds S2" xii ,,;:: C nS
-

q
,12 ~ 1 , 11 = 1,2,4, ... (8.23)

where C, = (I2)'/2(47T)sC. Thus, if m = 2k n (k a positive integer), then

k-'
!!DSS"x- Dssmxlb <. L IIDSS21"x- DsS21+1"xlb

I~O

k-I
<. C, L (21 n)S-q

I~O

< C, nS
-

q/(1 - 2S
-

q
). (8.24)

It follows that, for s = 0, 1, .... p the sequence of functions DS S" x (n = 1, 2,
4, ...) converges (in .!l'2), while by hypothesis the sequence S" x converges to x.
Since if/'p is complete, the conclusion of the theorem follows.

It is not true that l!x-Sr"X!i2=0(n-2r) (n=I,2,4, ...) implies xEif/'2r'

This is seen by taking for x a 2r-spline that has knots at the points m' 2-k

(m=0,±I,±2,...), for some positive integer k, with x(Zr-l) discontinuous at
some of these knots. Then S"x = x for n > 2k

, but x ¢ if/'zr.

9. UNIFORM ApPROXIMATION OF if/'p FUNCTIONS

As in the preceding section the functions to be approximated by 2r-splines
are periodic and in if/'p for some p > 1- As before, 1111 denotes the 2 co-norm,
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Ii IIYrp the norm in iFp • The spline interpolant S, considered as a linear trans
formation from iFp to ~s (s < p --!-) is bounded. A bound for this trans
formation is given in

LEMMA 9.1. Ifx E iFp (p> tJ,
x(t) = 2: O(ve21Tivl (N;;, 1),

Ivl;;'N
then

liDS S,n xII ,:;; 3(21T)S-P{2n- I (2p - 2s - I)-I N-2p+2s+ I} 1121Ix llil"p,
s<p-!. (9.1)

Proof We proceed as in the proof of Lemma 8.2, with (8.8) replaced by

!IDSSxll,:;; 2: ItI IIW'11
v

,:;; 3(21T)S 2: Ivlsltl, s = 0,1, ..., 2r - 1. (9.2)
vi

By (8.9) and (8.10) we have

ItI ,:;; {2n- I(2p - 2s _1)-1 N-2p+2s+1 2: Iv + knI2P-2SIO(v+k.\2}1/2;

hence

so that (9.2) yields (9.1).
If we apply the Schwarz inequality to the finite sum in (7.3), we obtain for

x(t)= 2: O(ve21Tlvl (N,;;;;n-l)
Ivl"'N

I!x(SJ-DSS,nxII<22'+2(21T)S-p{.2 IvI4'-2P 2: IvI2PlocvI2}1I2ns-2' (9.3)
Ivl"'N !vl"'N

and since ~ !vI 4r- 2p ,;;;; (2N + I)N4r-2p,

Ilx(S) - Ds S,n xll< 22'+2(21T)S {(2N + 1) N 4'-2p 2: Ivl2Plocvl2} 1/2 ns-2,
Ivl<;N

p;;,0;s=0,1,oo.,2r-1. (9.4)

Using (9.4) and Lemma 9.1, we find for x E iFp (p > !), with XN the partial
Fourier sum as before,

IIx(S) - Ds Sxll ,;;;; IIx~) - Ds SXNII + I!x(s) - x~)il + liDs Sx - DS SxNII

,;;;; 22'+2(21T)S-P{(2N + I)N4'-2P 2: Ivl2Plocvl2p/2nS-2r
Ivl"'N

+ 2: 121TVlslocvl + 3(21T)S-P{2n- I(2p - 2s - 1)-/ N-2p+2s+1
Ivl>N

2: \21TvI 2P locvI2PI2.
Ivl>N

(9.5)
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where we have used the inequality

L Iv[Slo:,.1 < {L IvI2S-1P\ /·2 {L IvI2Plo:,.12}1/2
Ivl>N Ivl>N f Ivl>N

< 2-s+p{(2P - 2s - 1)-1 L /vI2PI0:,.12\ 1/2 ns-p+I/2
Ivl>N f

The final result derived from (9.6) is

( 2 1)1/2
[[ x(S) - DS S nx'l < (27T)S-P 2P+2 P - nS-P+I/21Ixll r

, ! "" 2p - 2s - 1 I iI p'

S +! <p < 21'.

(9.6)

(9.7)

(9.8)

Thus, x ls ) is approximated uniformly by DS S,n x with an error of order
O(ns- p +li2) in the class "IYP(p > s + -!-), and an explicit bound on the coefficient
ofns- p + I /2 is established. For x E if', and s one of the numbers 0,1, ... , l' - 1,
the error is of order O(n-,+s+1/2), and that this is the best possible, is proved
below (see Theorem 11.2). We state the result in

THEOREM 9.1. Suppose S,nx(t) is theperiodic 2r-spline (I' ~ 1) that interpolates
the function x(t) at the knots m(n (m = 0,±1,±2, ...). Ifs is one of the integers
0, 1, ... ,21' - 1 and ifx E "IYpfor some p, s + -!- < p < 21', then l:x(S) - (S,n x)ls).1
= O(ns- p+I /2) as n -'?- 00.

In [6, Theorem 3] itis proved that ifx E "IY" then Ix(S)(t) - DS S,n x(t)1 = 0(1)
for s = 0, 1, ... , l' - 1, uniformly in t on a sequence of imbedded meshes. In
[8, Theorems 6, 8 and 10] the casesp = I' andp = 21' of Theorem 9.1 (for more
general meshes and more general types of splines) are proved.

10. A REPRODUCING KERNEL

As remarked before, the space "IY, plays a particular role in the analysis of
2r-splines. By "If = "If,n we denote the subspace of "IY, whose elements x
satisfy the conditions

x(v(n) = 0, v=O,I, ... ,n-l. (10.1)
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yj- is a Hilbert space which has a reproducing kernel, that is, a function KT E yj
such that

(10.2)

for each x E yj- and each real T. In this section we find explicit expressions for

KT •

r-fold integration by parts in (10.2) shows that K T is the reproducing kernel
of yj- if it satisfies, for T i: 0, ±lfn, ±2fn, ... , the following conditions

(i) KTE 'tf2r- 2, KT(t + 1) = KT(t), -co < t < co

(ii) K/v/n) = 0, v = 0,1, ..., n - 1

(iii) K~2r)(t) = 0, t i: 0, ±1/n, ±2/n, ... ; t i: T

(iv) K~2r-I)(T + 0) - K~2r-I)(T - 0) = (-1)', -co < T < co.

The function

(10.3)

(10.4)

is seen, by the use of (2.5), to satisfy (10.3, (iii), (iv». To obtain a function that
also satisfies (1O.3(ii» we subtract the spline interpolant SrnCT(t), obtaining

n-l
KT(t) = C/t) - L CT(v/n)so{t - v/n).

v-o
(10.5)

Clearly, KT satisfies (10.3); hence is the reproducing kernel of 'If. We develop
a more explicit expression for KT •

By definition of So [see (2.25)] and by the use of (2.6), we have

n-I
L B2r(T - v/n)so{t - v/n)
v-o

n-l n-l __

= n- I L B2r(T - v/n) + L (PI-' - nZr-2/B2r)B2.(T -v/n)B2r(t + fL - v/n)
v=o /L.v=O

n-I
= n-2r B2r(nT) - n-2r Bzr(nt) B2r(nT)/B2r + L PI-'-V Bzr{t - fL/n) B2r(T - v/n).

/L.v=O
(1O.6a)

Hence, using ~v P/L-vB2r(v!n) = 80.1-" which is a result from (2.25):

n-I
L [B2r(T - v/n) - Bzr(v/n)]so(t - vln)

v=o

n-l

- B2r(t) + L P/l-" B2r(t - fL!n) 82r(T - v/tI).
l-'.v=1

(1O.6b)
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Therefore, (10.5) gives

KT(t) = [(-1)"/(2r)!] [n-2r(l~2r(nt) -i-82r(nr) -82r(nt)82,(nr)/B2r - B2r)
,,-I

+ 2: Pp.-v 82r(t - !-tin) 82r(r - v/n) - 82r(t - r)].
p.. v~O

(10.7)

This formula makes the symmetry of the kernel apparent.
We develop still another formula for KT , using the functions bv for this

purpose. By (2.20), (2.6) and (5.1), we have
,,-I

2: Pp.-v 82r(t - !-tin) 82r(r - v/n)
/-'. v~O

,,-I ,,-I

= n- I 2: 2: A;;,! E':(P.-V) 82r(t - !-tin) 82r(r - v/n) (10.8)
m-O/-,. V~O
,,-I __

= n- 1 2: Am bm(t)bm(r) + n-2r 82r(nt) 82r(nr)/B2r.
m-O

If this is used in (10.7), we obtain

KT(t) = [(-1)"/(2r)!] [n-2r(82r(nt) +82r(nr) - B2r)
,,-I

+ n- I 2: Avbv(t)bv(r) -82r(t - r)]. (10.9)
V~O

We also give the Fourier expansion of K T • Using (2.7) and (5.8) in (10.9),
one arrives at

KT(t) = [(-1)"/(2r)!]n-2r(82r(nr) - B2r)

+ (217)-2r 2:' k-2r(e-27TikT - bk(r))e27Tikt.
k

(10.10)

11. EXACT ERROR BOUNDS

Let u(x) be a linear functional defined for a class offunctions x that includes
'If/ (for definition see Section 10), and which is bounded on 11,". Let its
bound be denoted by jlull = liujj";-r.; thus:

lIu!I";-r. = sup ju(x)l. (11.1)
xe"'li'"rn

IIxllil"r " 1

Using the reproducing kernel KT of '11/ (see Section 10), we have u(x) = (x,
u(K)); hence

(11.2)

It follows from general theory (see [1] or [2]) that u(Sx), where Sx = Sr" x
is the spline interpolant of x, represents the median of the values of u(x) for
x in the class

v=O,I, ...,n-1. (11.3)
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(PJ is a "disk" in if'"r), and that the maximal deviation ofthe values u(x) from
the median in PJ is

sup lu(x) - u(Sx)1 = ilu!i(p2 -IISxll}.yI2.
X£~

We shall calculate \\Sxlltrr' and Ilull1i? for various functionals u.

(11.4)

(11.8)

a. By (5.6) and (5.8)
11-1 11-1

IISxll}-. = (-l)r-I(2r)!n L ,\;ljtvI 2, t = n- I L e;;/lV gp.' (11.5a)
v=o 1-'=0

This is an explicit expression for \\Sxlltrr • We may also use the spline approxi
mation of the Fourier coefficients to express IISxlltrr. We denote them by
tv ... and have, by (4.7), for v;j:. 0 (modn)

t.r= fo
1

Sx(t)e-21TiVCdt=(-I)r-(2r)!(21Tv)-2r,\;lnt. (11.6)

Therefore, (11.5) becomes

n-I x

\\Sx\l}-r= L (21TV) 2r t.rev r= 1,2,.... (11.5b)
v=O

b. Let u(x) = uT(x) = X(T); that is, we consider interpolation at the point T,
and IluT11 is a significant measure for the error in interpolation. Since uT(K)
= Kn (11.2) gives

To calculate this we use (10.9), according to which
n-I

(-I)' K?>(t) = (n-rjr!)B,{nt) - (1jr!) Br(t - T) + (n- Ij(2r)!) L '\vb~r>(t)bv(T).
v=o (11.7)

If this function is expanded in a Fourier series, the coefficient of exp (21Tivt) is
oif v = 0, and is found to be

(_l)rI2(21TV)-r(e-21TiVT - biT»,

by (2.7) and (5.10), if v = ±I, ±2, .... Therefore

IluT11 = (21T)-r{~, v-2rle21TlvT _ bv(TW} 1/2.

Although in deriving this we assumed r to be even, it also holds for r odd.
Clearly, lexp(21TivT) - bk)! = !exp(-21TivT) - b_k)I; hence (11.8) may also
be written as

(11.9)
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We evaluate the order of 'iu,.II1f'",. as n ~ C/J. By (5.29), we obtain from (11.9):

-t(27T)2'iluT I1 2= 2 v-2'le217iVT - b,.(T)1 2+ 2 v-2'le217i"T - b,.(TW
I <;v<;[n/2] v>[./2]

< 24'+2 n-4' 2 v-2, --:- 4 2 v-2'
1<;v<;[n/2] ,'>[n/2]

Thus,
< 22'+1 n-2'+1 + 4(n/2)-2'+I/(2r - 1).

r = 1,2, ... ; n = 1,2, ....

(11.10)

(lUI)

The result IJuT !: = 0(n-,+1/2) was proved by Weinberger [9J for the case r = 2,
x nonperiodic.

We now show that 0(n-'+1/2) is the exact order of sup,. :luT II1f'",•. Using
T = 1/2n and v = Kn (0 < K< 1), we have by (5.8)

n,-1/2 v-'le17ivln - bv(I/2n)j = C(K) n- I ;2 (11.12)

where we have set

C(K) = 2K-' 2 (k - K)-2'/2 (k - K)-2'.
k odd k

Let Co> 0 be chosen such that

C(K) ~ Co, 1- < K< i-
Then by (11.12)

(11.13)

(lU4)

(11.15)

(lU8)

and by (11.9)

n'-1I21Iuldl1f'",. > CO(27T)-' 2- 1/2, n = 1,2, ... ; r = 1,2, ... , (11.16)

which proves the assertion. By using the inequalities

2 (k - K)-2'/2 (k - K)-2' > 2 (k - K)-2'/[K-2, + 2 2 (k - K)-2']
k odd k k odd k odd

> (1 - K)-2'/[K-2' + 2(1 - K)-2'J ~ 1/3, 1- < K< i
we see that Co = 22'+13-'-1 satisfies (11.14). Thus (11.16) becomes

n'- 1/21Iu1/2nll1f'",. > (2/3),+1 7T-' 2- 1/2, n = 1,2, ... ; r = 1,2, .... (11.17)

We now prove the existence and determine the value of

lim n'-1/21IuI/2nlltl",•.
n-oo

By (5.8)

le"lvln - bv(I/2n) I = 21 2 (k - v/n)-2'/2 (k - v/n)-2' I, v ~ o(mod n)
kodd k

= 2, v = n, 3n, 5n, ... ,

= 0, v = 0, 2n, 4n, .... (11.19)
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We introduce the functions

CS(z) = z-s + L' (z - k)-S, S = 1,2, ....
k

Then

(11.20)

CsG-z) = 2S L (z - k)-S, C.(-!-z +!) = 2S 2: (z - k)-s. (11.21)
k~n k~d

Substitution of (I 1.19), (11.20) and (11.21) in (11.8) yields

{ }
1/2

lIul/2nll = (27r)-r 2-4r -'-2 2: v-2r Cir(vj2n + !)jCir(vjn) + 2-2r+2n-2r C2rH) .
"'1'0

(11.22)
Since C.(z + I) = C.(z), one finds

2: v-2r C~r(vj2n + -!-)jCi.{vjn)
v..,o

= n~1 [Cir(v j2n + -!-) L (v + kn)-2r + Cir(vj2n) L (v + kn)-2rJ/Ci.{v jn)
v = I k even k odd

= n-2r 2-2r :~: [ Cir(vj2n + 1-) C2r(vj2n) + Cir(vj2n) C2r(vj2n + -!-)J/Cir(vjn)

n-I

= n-2r 2: C2r(vj2n) C2r(vj2n + t)jC2r(vjn).
v~1

(11.23)

Therefore, (11.22) may be written as

nr--l/211ul/2nll = (21T)-r2-2r+l{~ ~ C2r(vj2n) C2.(vj2n + -!-)/C2r(vjn)

+22rn-lC2rmr2 (11.24)

Cs(z) is a meromorphic function with poles of order sat z = 0, ±I, ±2, ....
From the well known Mittag-Leffler expansion of cotangent, one obtains

Cs(z) = [(_l)s-l lTsj(S - I)!] cot(s-I) lTZ. (11.25)

The function C2r(1-t)C2rCtt+t)jC2r(t) occurring in (11.24) is analytic in
0.;;; t.;;; 1. Indeed, it approaches the value 24r

LkOdd k-2r both as t approaches
oor 1. Therefore, (11.24) is the Riemann sum ofa convergent integral, and one
obtains

lim nr--1/2JJUI/2nllri"r. = (21T)-r 2-2r+1 (r. 1
dtC2rHt + 1-) C2rHt )/C2r(t)} 1/2. (11.26)

~ro .0

We have proved

THEOREM 11.1. 2- 1/2(2j3)'+1 <lTrnr- I /2suplx(r)! <23/2, n= 1,2, ... ; r= 1,
2, ... if the supremum is taken over -'X) < r < CX) and over the class offunctions
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'1Xofperiod 1 Il"hich ranish at 0, =:I/n, :1=2/n, ... andfor II'hich .10 I.\(r)(t)!ldt -c 1.

J'vloreover, nr- I '2 sup 1.\(1,'2n) approaches a positil'e limit as n --+ x, given in
(11.26).

c. We now assume r;;" 2 and consider rex) = rT(x) = X'(T). Then r(K)
= (d;dT)Kn and (11.2) gives

ilvT :! = IIdKTIdTIlir,· (11.27)

By (11.7) the coefficient of exp(27Tivt) in the expansion of (djdT) Kit) is found
to be

Thus,

l;vTlI = (27T)-r ~l {2 JI v-2r 121e2r.iVT - b/(T)j27TivI2r2. (11.28)

One proceeds as above to show that !lvT II1i-.. = 0(n-r+3/2) uniformly in T.

In the same way one can prove that if r;;" s + 1, and vT(x) represents X(s)(T),

then IlvT !11I",n = 0(n-r+s+ I
/
2

) uniformly in T, and that this is the exact asymptotic
order.

For the case where ro(x) represents x'(O), we prove the existence and
determine the value of

lim nr-3/21IvoI11l"ro,
n->oo

By (5.8),

1 - b,,'(0)/27Tiv = (n/v) k~OO k(k - vjn)-2'/k~~OO (k - v/n)-2r

= [C2r(v/n) - (n/v) C2r_l(v/n)]/C2r(v/n), V 't o(mod n)

= 1, v =o(mod n)

(11.29)

(11.30)

(11.31)

where we have used the functions (1l.20). Substitution of (11.30) in (11.28)
yields

Ilvoll = (27Ttr- l{ ~' [n2v-2r C~r_l(v/n) - 2nv-2r+ 1 C2r_l(v/n) C2r(v/n)

}

1/2

+ v-2rt2 C~r(v/n)]/Cir(vjn) + n-2r+2 f' k-2r+2 ,

and since C.(z + 1) = C.(z),

nr-3/2!!voll = (27T)-r-l {n- 1 :~: [C?r_l(vjn) - 2C?r_l(vjn)

+ C2r- 2(v/n) C2r(v/n)]/C2r(v/n) + n-2r+2 t' k-2r+2}1/2. (11.32)
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The function [-C~r-l(t)+ C2r-2(t)C2r(t)]/C2r(t), occurring in (11.32), is
analytic in 0 < t < I. It approaches the value Lk' k-2r +2 as t approaches O.
Therefore, (11.32) is the Riemann sum of a convergent integral, and one
obtains

lim nr-3/21Ivo!!";·,. = (27r)-r-l (C dt[C2r-it) C2r(t) - Cir_I(t)]/C2r(t)jl
l

/
2

"----+00 .. 0

r = 2,3, . . . . (11.33)
We have proved

THEOREM 11.2. There are positive numbers c" Cr depending on r only, such
thatfors=O,I, ...,r-l

n = 1,2, ... ; r = 2,3, ...

(11.35)

if the supremum is taken over -00 < T < 00 and over the class offunctions x of
41

period 1 which vanish at 0, ±1/n, ±2fn, ... and for which Jo Ix(r)(t)J2dt < I.

Moreover, nr- 3i2 sup Ix'(O)I approaches a positive limit as n ---+ x, given in
(11.33).

d. For the quadrature functional w(x) = wix) = fT x(t)dt, we have

w(K) = fT Kada, and (11.2) gives

:!wTII = lifT Ka dall . (11.34)
-T J'II/"r

Using (11.7), this gives

IlwT!1 = 2(21T)-r-1 {2 JI v-2r-2(sin21TvT -1TV fT bvCt)dt)2} 1/2.

We work out the order of :lwTI!,r,. as n ---+ 00 for the case T = Ijn. By (6.22)
we have

. fl/osm(21Tv/n) -1TV bv(t)dt
-lin

= sin (21Tvfn) t:' k(k - v/n)-2r-I/2:. (k - v/n)-2r, vi'- o(mod n),

= -21Tv/n, V == o(modn). (11.36)

Therefore,

Ilwl/nll = 2(27r)-r-1 (2 L v-2r-2Sin2 (21Tv/n)[L k(k - v/n)-2r-1
v~l.v¥O k

]

2 } 1/2
/

2:. (k - v/n)-2r + 81T2n-2r- 2 2:. v-2r .
k v~1

(11.37)
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We use sin2 (217v/n) < 417 2 1'2;112 in (11.37), and for 21' « n the inequalities

o c;;; 2 k(k - v/Il)-2r-I/~ (k - V/llr 2r <; (vlllfr 2: k(k - "'/n)-2r-1
k k k

« (v/n)2r[ ~ k- 2r -+- i k(k _ 1)-2r-l]
k~1 k~1

= (v/n)2r[22r ~ k-2r -i- (2 2r - -t) ~ k-2r- l
]

k~ 1 k~ 1

For 21' > n, we have, more directly, by (5.12)

J
'I/II

Isin(217v/n) - 171' bv(t)dtl « 417v/n.
-lin

Thus,

I!Wllnll < 2(217)-r-1 {24r+5 172n-4r- 2 2 v2r + 25 172 n-2 2 v2r
2v~n 2v>n

+ 8 2 -2r-2" -2rl
17 n L V f'

v'~l

or
Ilwi/nllrl? < 27;2 17-rn-r

-
112

, n = 1,2, ... ; r = 1,2, ....

(11.38)

(11.39)

(11.40)

(11.42)

To show that nr~I/2111r1/llilri?tends to a positive limit, we make use of the
functions (11.20) and write

,~/-2r-2 sin2 (217v/n) [t k(k - v!nr2r-l/f (k - 1'11l)-2J

n-I
= n-2r- 2 2 sin2(217v/n) [-Cir+I("'/n) + C2rCv/n) C2r •2(v/n)]/C2rCv/n).

v~1

(11.41)
Substitution of (11.41) in (11.3 7) yields

00 } 1/2+ C2rCvfn) C2r+2(vfn)]fC2r(vfn) + 8172 n- l '~I v-2r .

From this one concludes as above

~~ nr+1/21Iwl/n:lrI"r" = 2(217)-r-1 Uo1
dt sin2(217t) [C2r(t) C2r -it)

_ C~r+1(t)]fC2r(t)} 1/2. (11.43)

The integrand is analytic in [0,1]. It approaches the value 4172 L' k-2r as t
approaches O. Thus, the limit in (11.43) is not O. We have proved
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THEOREM 11.3. suplf
l/n

x(t)dtl < 27/2rr-rn-r-I/2, n = 1,2, ... ; r = 1,2, ...
-lin

if the supremum is taken OL:er the class offunctions x ofperiod 1 which vanish

J
'I

at 0, ±l/n, ±2/n, ... and for which 0 :x(r)(t)12dt < 1. Moreover,

nr+1/2suplfl/n x(t)dt! approaches a positive limit as n ~ OCJ, given in (11.43).
-lin I

e. Finally we consider the Fourier coefficient functional

v=O.

!vex) = fol
x(t) e-2TTivt dt, v = 0, ±l, ±2, ....

By (10.10) we have

fv(K) = (2rrv)-2r[e27Tlvt - b,.(t)], vol 0

= [(-IYI(2r)!]n-2r[l~2rCnt) - B2r], V = O.

Using this in (11.2), we find

{ }

(/2

Ilfvl/1I'"," = (2rrn)-r t:' (k - v/n)-2rf[l + (v/n)2r t:' (k - v/n)-2r] ,

vt:O(modn)
= (2rrv)-', v#O,v=O(modn)

= (2rrn)-r {t:' k-2r}1/2 = n-r{IB2r l/(2r)!}1/2,

Clearly, :ifvl 1 is of order O(n-r). More precisely,

lim nr:!fvI11l'"," = {[ B2r l/(2r )!}1/2, V = 0, ±l, ±2, ....
n~oo

It is noteworthy that this limit is independent of v. We have proved

THEOREM 11.4

lim nrsup If
o
l
x(t) e-27Ti ,·t dtl = {IB2r l/(2r)!}1/2, r= 1,2, ... ,

n~oo Jl I

(11.44)

(11.45)

(11.46)

(11.47)

if the supremum is taken over the class offunctions x ofperiod 1 which vanish at

0, ±l/n, ±2/n, ... andfor which CIx(r)(t)1 2dt < 1.
,0

We shall now show that xv(t) = exp(2rrivt) is an extremal function for the
approximation of the value!v(x), given x E!2. That is, equality holds in (11.4)
for x = Xv if u = fv and p2 = I!xvll~rr = (2rrv)2r. Indeed, since SXv= bv, we have
by (5.11)

{
/

}

1/2

(p2 -IISxv!I}-.)'/2 = (2rrv)2r - (2rrn)2r t: (k - v/n)-2r , v t: o(mod n)



64 ~IlCHAEL GOLOMB

and by (11.46)

iifvll(pZ -liSx"I!~/cY:z = I - (vln)-Z'/ f (k - vlntZ', v ~ 0 (modn). (l1.48)

On the other hand, by (5.8)

/,.(x,.) - /,,(Sx,.) = I - (vln)-Z'/ t (k - v/nrz" ~,~ 0 (mod n). (l1.49)

Thus, we have proved, for v ~ 0 (modn)

(l1.50)

For v = O. both sides of (11.50) are equal to 0, and for v = kn (k = ±1,±2, ...),
both sides are equal to 1. Thus (l1.50) is valid for every v. In summary, we
have

THEORHf 11.5. Let g/ (n = 1,2, ... , r = 1,2, ...) be the class offunctions of
period I which hare fixed (real or complex) wlues at 0, ±l/n, ±2In, ... and for

which CIx(')(tWdt < 1. Then the median value of the Fourier coefficient
.0

" I
Jo x(t)e-Z1TiI·t dt is 0 if v = kn (k = ±1,±2, ...); otherwise, it is

t,,(x) = (lIn) nil x(m/n)e-Z1TiVmln/2: (l- kn(v)-z,.
tn~O k

The least upper bound of the del'iation of the median from the true wlue in
£2/ is

Ilfv:1 {I - :~: (27TV)Z' g,.,.(x) t(x)} liZ

where
11-1

t(x) = (lIn) 2: x(m/n) e-Z1TiI
'tn ln

m=O

and !,/',II is giren in (11.46). The coefficient :1/'.11 tends to 0 like O(n-r) as n -+ x,

and
lim n'I!/'"i = {IHzrl ((2r )!} liZ,
n->-oo

independent ofv. The least upper bound is attained by x(t) = (27Tv)-r exp (27Tivt)
in fi)/.
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